Nguyễn Trường Khanh

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Nguyễn Trường Khanh
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

a/ Goi E là trung điểm của MC

Từ gt AM=12MC⇒AM=ME=ECAM=21MCAM=ME=EC

Xét tg BCM có

ME=EC (cmt); DB=DC (gt) => DE là đường trung bình của tg BCM

=> DE//BM 

Xét tg ADE có

AM=ME (cmt)

BM//DE (cmt) =>OM//DE

=> OA=OD (trong tg đường thẳng đi qua trung điểm của 1 cạnh và // với 1 cạnh thì đi qua trung điểm cạnh còn lại)

b/

Ta có DE là đường trung bình của tg BCM ⇒DE=12BMDE=21BM

Xét tg ADE có

OA=OD (cmt); AM=ME (cmt) => OM là đường trung bình của tg ADE

⇒OM=12DE=12.12BM=14BMOM=21DE=21.21BM=41BM

Từ M kẻ MK // BD (K thuộc DC)

a, Xét t/g DBC có: MK // BD, MB = MC (gt)

=> MK là đường trung bình của t/g DBC

=> CK = DK (1)

Xét t/g AMK có: MK // ID, IA = IM (gt)

=> ID là đường trung bình của t/g AMK

=> DA = DK (2)

Từ (1) và (2) => CK = DA

Mà CK = DC2DC2

=>DA=DC2(đpcm)DA=DC2(đpcm)

b, Vì MK là đường trung bình của t/g DBC

=> MK=BD2(3)MK=BD2(3)

Vì ID là đường trung bình của t/g AMK

=>ID=MK2(4)ID=MK2(4)

Từ (3) và (4) => BD > ID

Trong ΔABC ta có: E là trung điểm của cạnh AB

D là trung điểm của cạnh AC

Nên ED là đường trung bình của ΔABC

⇒ ED // BC và ED = 1/2 BC

(tính chất đường trung bình của tam giác)

+) Tứ giác BCDE có ED // BC nên BCDE là hình thang.

Trong hình thang BCDE, ta có: BC // DE

M là trung điểm cạnh bên BE

N là trung điểm cạnh bên CD

Nên MN là đường trung hình hình thang BCDE ⇒ MN // DE

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

(tính chất đường trung bình hình thang)

Trong ΔBED, ta có: M là trung điểm BE

MI // DE

Suy ra: MI là đường trung bình của ΔBED

⇒ MI = 1/2 DE = 1/4 BC (tính chất đường trung bình của tam giác)

Trong ΔCED ta có: N là trung điểm CD

NK // DE

Suy ra: NK là đường trung bình của ΔCED

⇒ NK = 1/2 DE = 1/4 BC (tính chất đường trung bình của tam giác)

IK = MN – (MI + NK) = 3/4 BC – (1/4 BC + 1/4 BC) = 1/4 BC

⇒ MI = IK = KN = 1/4 BC

ta có GM=1/2GB (tính chất đường trung tuyến của tam giác) GD=1/2GB (gt) suy ra GM=GD ta có GN=1/2GC(tính chất đường trung tuyến của tam giác) GE=1/2GC (gt) vậy tứ giác MNDE có GM=GD và GN=GE nên là hình bình hành(vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường) => MN//DE , ND//ME (tích chất hình bình hành) (đpcm)