Nguyễn Linh Giang

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Nguyễn Linh Giang
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

Do BD là đường trung tuyến của ∆ABC (gt)

⇒ D là trung điểm của AC

Do CE là đường trung tuyến của ∆ABC (gt)

⇒ E là trung điểm của AB

⇒ DE là đường trung bình của ∆ABC

⇒ DE // BC và DE = BC : 2

⇒ BC = 2DE

Do DE // BC (cmt)

⇒ BCDE là hình thang

Do M là trung điểm của BE (gt)

N là trung điểm của CD (gt)

⇒ MN là đường trung bình của hình thang BCDE

⇒ MN // DE // BC và MN = (DE + BC) : 2

Do MN // DE (cmt)

⇒ MI // DE và NK // DE

∆BDE có:

MI // DE (cmt)

M là trung điểm của BE (gt)

⇒ I là trung điểm của BD

⇒ MI là đường trung bình của ∆BDE

⇒ MI = DE : 2   (1)

∆CDE có:

NK // DE (cmt)

N là trung điểm của CD (gt)

⇒ K là trung điểm của CE

⇒ NK là đường trung bình của ∆CDE

⇒ NK = DE : 2   (2)

Mà MI = DE : 2

⇒ MI = NK = DE : 2

⇒ MI + NK = DE

Ta có:

MN = (DE + BC) : 2

Mà BC = 2DE (cmt)

⇒ MN = (DE + 2DE) : 2

= DE + DE : 2

Lại có:

MN = MI + IK + NK

= (MI + NK) + IK

= DE + IK

⇒ DE + IK = DE + DE : 2

⇒ IK = DE : 2 (3)

Từ (1), (2) và (3) ⇒ MI = IK = KNDo BD là đường trung tuyến của ∆ABC (gt)

⇒ D là trung điểm của AC

Do CE là đường trung tuyến của ∆ABC (gt)

⇒ E là trung điểm của AB

⇒ DE là đường trung bình của ∆ABC

⇒ DE // BC và DE = BC : 2

⇒ BC = 2DE

Do DE // BC (cmt)

⇒ BCDE là hình thang

Do M là trung điểm của BE (gt)

N là trung điểm của CD (gt)

⇒ MN là đường trung bình của hình thang BCDE

⇒ MN // DE // BC và MN = (DE + BC) : 2

Do MN // DE (cmt)

⇒ MI // DE và NK // DE

∆BDE có:

MI // DE (cmt)

M là trung điểm của BE (gt)

⇒ I là trung điểm của BD

⇒ MI là đường trung bình của ∆BDE

⇒ MI = DE : 2   (1)

∆CDE có:

NK // DE (cmt)

N là trung điểm của CD (gt)

⇒ K là trung điểm của CE

⇒ NK là đường trung bình của ∆CDE

⇒ NK = DE : 2   (2)

Mà MI = DE : 2

⇒ MI = NK = DE : 2

⇒ MI + NK = DE

Ta có:

MN = (DE + BC) : 2

Mà BC = 2DE (cmt)

⇒ MN = (DE + 2DE) : 2

= DE + DE : 2

Lại có:

MN = MI + IK + NK

= (MI + NK) + IK

= DE + IK

⇒ DE + IK = DE + DE : 2

⇒ IK = DE : 2 (3)

Từ (1), (2) và (3) ⇒ MI = IK = KNv

a/

Xét tg ABC có

NA=NB; MA=MC => MN là đường trung bình của tg ABC => MN//BC

Xét tg GBC có

DG=DB; EG=EC => DE là đường trung bình của tg GBC => DE//BC

=> MN//DE (cùng // BC)

b/

Xét tg ABG có

NA=NB; DG=DB => ND là đường trung bình của tg ABG => ND//AG

Xét tg ACG có

MA=MC; EG=EC => ME là đường trung bình của tg ACG => ME//AG

=> ND//ME (cùng // với AG)

a: Xét ΔABM có 

D là trung điểm của AB

F là trung điểm của AM

Do đó: DF là đường trung bình của ΔABM

Suy ra: DF//BM và \(D F = \frac{B M}{2}\)(1)

hay DF//BC

Xét ΔAMC có 

E là trung điểm của AC

F là trung điểm của AM

Do đó: EF là đường trung bình của ΔAMC

Suy ra: EF//MC và \(E F = \frac{M C}{2} \left(\right. 2 \left.\right)\)

hay EF//BC

Ta có: DF//BC

FE//BC

mà DF,FE có điểm chung là F

nên D,F,E thẳng hàng

b: Ta có: M là trung điểm của BC

nên MB=MC(3)

Từ (1), (2) và (3) suy ra DF=FE

mà D,F,E thẳng hàng

nên F là trung điểm của DE

 M kẻ MK // BD (K thuộc DC)

a, Xét t/g DBC có: MK // BD, MB = MC (gt)

=> MK là đường trung bình của t/g DBC

=> CK = DK (1)

Xét t/g AMK có: MK // ID, IA = IM (gt)

=> ID là đường trung bình của t/g AMK

=> DA = DK (2)

Từ (1) và (2) => CK = DA

Mà CK = \(\frac{D C}{2}\)

=>\(D A = \frac{D C}{2} \left(\right. đ p c m \left.\right)\)

b, Vì MK là đường trung bình của t/g DBC

=> \(M K = \frac{B D}{2} \left(\right. 3 \left.\right)\)

Vì ID là đường trung bình của t/g AMK

=>\(I D = \frac{M K}{2} \left(\right. 4 \left.\right)\)

Từ (3) và (4) => BD > ID M kẻ MK // BD (K thuộc DC)

a, Xét t/g DBC có: MK // BD, MB = MC (gt)

=> MK là đường trung bình của t/g DBC

=> CK = DK (1)

Xét t/g AMK có: MK // ID, IA = IM (gt)

=> ID là đường trung bình của t/g AMK

=> DA = DK (2)

Từ (1) và (2) => CK = DA

Mà CK = \(\frac{D C}{2}\)

=>\(D A = \frac{D C}{2} \left(\right. đ p c m \left.\right)\)

b, Vì MK là đường trung bình của t/g DBC

=> \(M K = \frac{B D}{2} \left(\right. 3 \left.\right)\)

Vì ID là đường trung bình của t/g AMK

=>\(I D = \frac{M K}{2} \left(\right. 4 \left.\right)\)

Từ (3) và (4) => BD > ID