

Nguyễn Phương Linh
Giới thiệu về bản thân



































Xét tg DKC và tg BHA có H=K =90 đỘ
DC=AB( hbh ABCD)
ABH=CBK( hbh ABCD, AB//DC)
Suy ra tg DKC=tg BHA( ch-gn)
=> CK=AH( 2 cạnh t/ư)
Ta có : AH vg góc DB
CK vg góc DB
=> CK//AH
Xét tg AKCH có CK//AH(cmt)
CK=AH( cmt)
=> AKCH là hbh(3)
Xét ΔABC có AN/AB=AM/AC=1/2
nên NM//BC và NM=1/2BC(1)
Xét ΔGBC có GP/GB=GQ/GC=1/2
nên PQ//BC và PQ=BC/2(2)
Từ (1), (2) suy ra NM//PQ và NM=PQ
=>MNPQ là hình bình hành
a) Vì ABCD là hình bình hành nên AB = CD; AB // CD.
Mà hai điểm B, C lần lượt là trung điểm AE, DF.
Suy ra AE = DF; AB = BE = CD = CF.
Tứ giác AEFD có AE // DF (vì AB // CD); AE = DF (chứng minh trên).
Do đó tứ giác AEFD là hình bình hành.
Tứ giác ABFC có AB // CF (vì AB // CD); AB = CF (chứng minh trên).
Do đó tứ giác ABFC là hình bình hành.
Vậy ta chứng minh được hai tứ giác AEFD, ABFC là những hình bình hành.