『Kuroba ム Tsuki Ryoo ︵²ᵏ⁷』
Giới thiệu về bản thân
\(\text{∘ Ans}\)
\(\downarrow\)
`1,`
`86.15 + 150. 1,4`
`= 86. 15 + 15. 14`
`= 15.(86 + 14)`
`= 15.100`
`= 1500`
`2,`
`93.32 + 14.16`
`= 93.32 + 2.7.16`
`= 93.32 + 32.7`
`= 32.(93 + 7)`
`= 32.100`
`= 3200`
`3,`
\(98,6\cdot199-990\cdot9,86\)
`=`\(98,6\cdot199-99\cdot98,6\)
`=`\(98,6\cdot\left(199-99\right)\)
`=`\(98,6\cdot100\)
`=`\(9860\)
`4,`
\(85\cdot12,7+5\cdot3\cdot12,7?\)
`=`\(85\cdot12,7+15+12,7\)
`=`\(12,7\cdot\left(85+15\right)\)
`=`\(12,7\cdot100\)
`= 1270`
`5,`
\(0,12\cdot90-110\cdot0,6+36-25\cdot6?\)
\(=6\cdot1,8-11\cdot6+6\cdot6-25\cdot6\)
\(=6\cdot\left(1,8-11+6-25\right)\)
\(=6\cdot\left(-28,2\right)=-169,2\)
Xem lại bài làm và cấu trúc bài của lớp.
\(\text{∘ Ans}\)
\(\downarrow\)
\(\left(3-x\right)\cdot\left(4-x\right)\cdot\left(5-x\right)=0\)
`TH1:`
`3 - x = 0`
`\Rightarrow x = 3-0`
`\Rightarrow x = 3`
`TH2:`
`4 - x = 0`
`\Rightarrow x = 4 - 0`
`\Rightarrow x = 4`
`TH3:`
`5 - x = 0`
`=> x = 5 - 0`
`=> x = 5`
Vậy, `x = {3; 4; 5}.`
\(\text{∘ Ans}\)
\(\downarrow\)
\(\left(x^2-5x+4\right)\left(2x+4\right)-\left(2x^2-x-10\right)\left(x-3\right)\)
`= 2x(x^2 - 5x + 4) + 4(x^2 - 5x + 4) - [x(2x^2 - x - 10) - 3(2x^2 - x - 10) ]`
`= 2x^3 - 10x^2 + 8x + 4x^2 - 20x + 16 - (2x^3 - x^2 - 10x - 6x^2 + 3x + 30)`
`= 2x^3 - 6x^2 - 12x + 16 - 2x^3 + x^2 + 10x + 6x^2 - 3x - 30`
`= (2x^3 - 2x^3) + (-6x^2 + 6x^2 + x^2) + (-12x + 10x - 3x) + (16 - 30)`
`= x^2 - 5x - 14`
Bạn xem lại đề.
`@` `\text {Ans}`
`\downarrow`
\(6\times\left(5\times x+35\right)=330\)
`\Rightarrow 5 \times x + 35 = 330 \div 6`
`\Rightarrow 5 \times x + 35 = 55`
`\Rightarrow 5 \times x = 55 - 35`
`\Rightarrow 5 \times x = 20`
`\Rightarrow x = 20 \div 5`
`\Rightarrow x=4`
Vậy, `x=4.`
Có phải 31 đâu a? \(-3\dfrac{1}{2}\) mà c?
\(\text{∘}\) \(\text{Ans}\)
\(\downarrow\)
\(14x^2y^3-7xy^2\cdot\left(2x-3y\right)\)
`=`\(14x^2y^3-\left[7xy^2\cdot2x+7xy^2\cdot\left(-3y\right)\right]\)
`=`\(14x^2y^3-\left(14x^2y^2-21xy^3\right)\)
`=`\(14x^2y^3-14x^2y^2+21xy^3\)
\(\text{∘}\) \(\text{Kaizuu lv uuu.}\)
\(\dfrac{4}{9}-x=\dfrac{1}{8}\)
`\Rightarrow`\(x=\dfrac{4}{9}-\dfrac{1}{8}\)
`\Rightarrow`\(x=\dfrac{23}{72}\)
\(3\cdot\left[\left(4-x\right)3+51\right]\div3-2^2=14\)
\(\Rightarrow3\cdot\left(12-3x+51\right)\div3-4=14\)
\(\Rightarrow3\cdot\left(-3x+12+51\right)\div3=14+4\)
\(\Rightarrow3\cdot\left(-3x+63\right)\div3=18\)
\(\Rightarrow-9x+189=18\cdot3\)
\(\Rightarrow-9x+189=54\)
\(\Rightarrow-9x=54-189\)
\(\Rightarrow-9x=-135\)
\(\Rightarrow x=15\)
`2x(x-2)=0`
`\rightarrow 2x^2-4x=0`
`\rightarrow x(2x-4)=0`
`\rightarrow `\(\left[{}\begin{matrix}x=0\\2x-4=0\end{matrix}\right.\)
`\rightarrow `\(\left[{}\begin{matrix}x=0\\2x=4\end{matrix}\right.\)
`\rightarrow `\(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy, nghiệm của đa thức là `x={0; 2}`
`-x^2+5x-4=0`
`\rightarrow x^2-5x+4=0`
`\rightarrow x^2-4x-x+4=0`
`\rightarrow (x^2-4x)-(x-4)=0`
`\rightarrow x(x-4)-(x-4)=0`
`\rightarrow (x-4)(x-1)=0`
`\rightarrow `\(\left[{}\begin{matrix}x-4=0\\x-1=0\end{matrix}\right.\)
`\rightarrow `\(\left[{}\begin{matrix}x=4\\x=1\end{matrix}\right.\)
Vậy, nghiệm của đa thức là `x={4; 1}.`