Trần Tiến Thành

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Trần Tiến Thành
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

M(x)=x8−101x7+101x6−101x5+...+101x2−101x+125

\(= x^{8} - 100 x^{7} - x^{7} + 100 x^{6} + x^{6} - 100 x^{5} - x^{5} + . . . + 100 x^{2} + x^{2} - 100 x - x + 100 + 25\)

\(= x^{7} \left(\right. x - 100 \left.\right) - x^{6} \left(\right. x - 100 \left.\right) + x^{5} \left(\right. x - 100 \left.\right) - . . . + x \left(\right. x - 100 \left.\right) - \left(\right. x - 100 \left.\right) + 25\)

Vậy \(M \left(\right. 100 \left.\right) = 25\).

M(x)=x8−101x7+101x6−101x5+...+101x2−101x+125

\(= x^{8} - 100 x^{7} - x^{7} + 100 x^{6} + x^{6} - 100 x^{5} - x^{5} + . . . + 100 x^{2} + x^{2} - 100 x - x + 100 + 25\)

\(= x^{7} \left(\right. x - 100 \left.\right) - x^{6} \left(\right. x - 100 \left.\right) + x^{5} \left(\right. x - 100 \left.\right) - . . . + x \left(\right. x - 100 \left.\right) - \left(\right. x - 100 \left.\right) + 25\)

Vậy \(M \left(\right. 100 \left.\right) = 25\).

M(x)=x8−101x7+101x6−101x5+...+101x2−101x+125

\(= x^{8} - 100 x^{7} - x^{7} + 100 x^{6} + x^{6} - 100 x^{5} - x^{5} + . . . + 100 x^{2} + x^{2} - 100 x - x + 100 + 25\)

\(= x^{7} \left(\right. x - 100 \left.\right) - x^{6} \left(\right. x - 100 \left.\right) + x^{5} \left(\right. x - 100 \left.\right) - . . . + x \left(\right. x - 100 \left.\right) - \left(\right. x - 100 \left.\right) + 25\)

Vậy \(M \left(\right. 100 \left.\right) = 25\).

M(x)=x8−101x7+101x6−101x5+...+101x2−101x+125

\(= x^{8} - 100 x^{7} - x^{7} + 100 x^{6} + x^{6} - 100 x^{5} - x^{5} + . . . + 100 x^{2} + x^{2} - 100 x - x + 100 + 25\)

\(= x^{7} \left(\right. x - 100 \left.\right) - x^{6} \left(\right. x - 100 \left.\right) + x^{5} \left(\right. x - 100 \left.\right) - . . . + x \left(\right. x - 100 \left.\right) - \left(\right. x - 100 \left.\right) + 25\)

Vậy \(M \left(\right. 100 \left.\right) = 25\).

Theo bất đẳng thức tam giác:

\(A B - A C < B C < A B + A C\)

\(5 < B C < \&\text{nbsp}; 7\)

\(B C = 6 c m\)

Vậy tam giác \(A B C\) cân tại \(B\).

Theo bất đẳng thức tam giác:

\(A B - A C < B C < A B + A C\)

\(5 < B C < \&\text{nbsp}; 7\)

\(B C = 6 c m\)

Vậy tam giác \(A B C\) cân tại \(B\).

Theo bất đẳng thức tam giác:

\(A B - A C < B C < A B + A C\)

\(5 < B C < \&\text{nbsp}; 7\)

\(B C = 6 c m\)

Vậy tam giác \(A B C\) cân tại \(B\).

Theo bất đẳng thức tam giác:

\(A B - A C < B C < A B + A C\)

\(5 < B C < \&\text{nbsp}; 7\)

\(B C = 6 c m\)

Vậy tam giác \(A B C\) cân tại \(B\).

Theo bất đẳng thức tam giác:

\(A B - A C < B C < A B + A C\)

\(5 < B C < \&\text{nbsp}; 7\)

\(B C = 6 c m\)

Vậy tam giác \(A B C\) cân tại \(B\).

Theo bất đẳng thức tam giác:

\(A B - A C < B C < A B + A C\)

\(5 < B C < \&\text{nbsp}; 7\)

\(B C = 6 c m\)

Vậy tam giác \(A B C\) cân tại \(B\).