Nguyễn Anh Hiệp

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Nguyễn Anh Hiệp
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

giải:

loading... 

Xét ΔBEDΔBED có {MI//EDME=BM{MI//EDME=BM suy ra ID=IBID=IB.

Xét ΔCEDΔCED có {NK//EDNC=ND{NK//EDNC=ND suy ra KE=KCKE=KC.

Suy ra MI=12EDMI=21EDNK=12EDNK=21EDED=12BCED=21BC.

IK=MK−MI=12BC−12DE=DE−12DE=12DEIK=MKMI=21BC21DE=DE21DE=21DE.

Vậy MI=IK=KNMI=IK=KN.

giải:

loading... 

a) Vì BMBMCNCN là các đường trung tuyến của ΔABCΔABC nên MA=MCMA=MCNA=NBNA=NB.

Do đó MNMN là đường trung bình của Δ ABCΔ ABC, suy ra MNMN // BCBC. (1)

Ta có DEDE là đường trung bình của Δ GBCΔ GBC nên DEDE // BCBC.  (2)

Từ (1) và (2) suy ra MNMN // DEDE.

b) Xét Δ ABGΔ ABG, ta có NDND là đường trung bình.

Xét Δ ACGΔ ACG, ta có MEME là đường trung bình.

Do đó NDND // AGAGMEME // AGAG.

Suy ra NDND // MEME.

giải:

loading...  

a) Qua DD vẽ một đường thẳng song song với BMBM cắt ACAC tại NN.

Xét Δ MBCΔ MBC có DB=DCDB=DC và DNDN // BMBM nên MN=NC=12MCMN=NC=21MC (định lí đường trung bình của tam giác).

Mặt khác AM=12MCAM=21MC, do đó AM=MN=12MCAM=MN=21MC.

Xét Δ ANDΔ AND có AM=MNAM=MN và BMBM // DNDN nên OA=ODOA=OD hay OO là trung điểm của ADAD.

b) Xét Δ ANDΔ AND có OMOM là đường trung bình nên OM=12DNOM=21DN. (1)

Xét Δ MBCΔ MBC có DNDN là đường trung bình nên DN=12BMDN=21BM. (2)

Từ (1) và (2) suy ra OM=14BMOM=41BM.

 giải:

loading... 

a) Kẻ MNMN // BDBDN∈ACNAC.

MNMN là đường trung bình trong △CBDCBD

Suy ra NN là trung điểm của CDCD (1).

ININ là đường trung bình trong △AMNAMN

Suy ra DD là trung điểm của ANAN (2).

Từ (1) và (2) suy ra AD=12DCAD=21DC.

b) Có ID=12MNID=21MNMN=12BDMN=21BD, nên BD=IDBD=ID.

Xét tam giác ABCABC có BC⊥ AB′BC AB và B′C′⊥AB′BCAB nên suy ra BCBC // B′C′BC.

Theo hệ quả định lí Thalès, ta có: ABAB′ =BCBC′ABAB =BCBC

Suy ra xx+h =aa′x+hx =aa

a′.x=a(x+h)a.x=a(x+h)

a′.x−ax=aha.xax=ah

x(a′−a)=ahx(aa)=ah

x=aha′ −ax=a aah.

loading... 

Trong tam giác ADBADB, ta có: MNMN // ABAB (gt)

Suy ra DNDB =MNABDBDN =ABMN (hệ quả định lí Thalès) (1)

Trong tam giác ACBACB, ta có: PQPQ // ABAB (gt)

Suy ra CQCB =PQABCBCQ =ABPQ (hệ quả định lí Thalès) (2)

Lại có: NQNQ // ABAB (gt); ABAB // CDCD (gt)

Suy ra NQNQ // CDCD

Trong tam giác BDCBDC, ta có: NQNQ // CDCD (chứng minh trên)

Suy ra DNDB =CQCBDBDN =CBCQ (định lí Thalès) (3)

Từ (1), (2) và (3) suy ra MNAB =PQAB hayABMN =ABPQ hayMN = PQ$ (đpcm).

Khi đó, ADAD là đường trung tuyến của tam giác ABCABC.

Vì GG là trọng tâm của tam giác ABCABC nên điểm GG nằm trên cạnh ADAD.

Ta có AGAD=23ADAG=32 hay AG=23ADAG=32AD.

Vì MGMG // ABAB, theo định lí Thalès, ta suy ra: AGAD=BMBD=23ADAG=BDBM=32.

Ta có BD=CDBD=CD (vì DD là trung điểm của cạnh BCBC) nên BMBC=BM2BD=22.3=13BCBM=2BDBM=2.32=31.

Do đó BM=13BCBM=31BC (đpcm).

ABCD là hình thang suy ra ABAB // CDCD.

Áp dụng hệ quả định lí Thalès, ta có: OAOC =OBODOCOA =ODOB

Suy ra OA.OD=OB.OCOA.OD=OB.OC (đpcm).

 

Áp dụng định lí Thalès trong tam giác:


DEDE // ACAC nên AEAB=CDBCABAE=BCCD;


DFDF // ACAC nên AFAC=BDBCACAF=BCBD.

Khi đó, AEAB+AFAC=CDBC+BDBC=BCBC=1ABAE+ACAF=BCCD+BCBD=BCBC=1.