a : 8 dư 7
a : 31 dư 28
a + 1 chia hết cho 8
a + 3 chia hết cho 37
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n + 1 chia hết cho 8 => n +1 + 64 = n + 65 chia hết cho 8
n + 3 chia hết cho 31 => n + 3 + 62 = n + 65 chia hết cho 31
=> n + 65 là BSC(8; 31) từ đó tìm ra các giá trị của n thỏa mãn dk đè bài
Chia 5 dư 1 tận cùng là: 1 hoặc 6
Mà 17xy chia hết cho 2,3 nên y = 6
=> 17x6 chia hết cho 2 và 3 => ( 1 + 7 + x + 6 ) \(⋮\)3 => 14 + x \(⋮\)3
=> x \(\in\){ 1;4;7 }
=> y = 6; x \(\in\){ 1;4;7 }
Các phần sau tương tự
1) Gọi số cần tìm là A(A thuộc N)
Vì A chia 4 dư 3, ... nên A + 8 chia hết cho 4, 17, 19.
=> A + 8 chia hết cho 1292 (ƯCLN(4; 17; 19) = 1)
Số dư của A khi chia cho 1292 là:
1292 - 8 = 1284
Vậy A chia 1292 dư 1284.
2) Vì 2a - 3b chia hết cho 13 nên 4(2a - 3b) chia hết cho 13.
Xét tổng:
4(2a - 3b) - (8a - b)
= 8a - 12b - 8a + b
= (12b + b) - (8a - 8a)
= 13b chia hết cho 13.
Mà 4(2a -3b) chia hết cho 13 nên 8a - b chia hết cho 13(ĐPCM)
Tick ủng hộ mình nha
ta có n-3 chia hết cho 5 6 7 8
nên n thuộc BC(5,6,7,8)
mà BCNN(5,6,7,8)=(tự tìm tiếp nha)
Bài 1:
Giải:
Số tự nhiên có hai chữ số có dạng: \(\overline{ab}\)
Khi viết số đó sau số 2003 ta được số: \(\overline{2003ab}\)
Theo bài ta có: \(\overline{2003ab}\) ⋮ 37
200300 + \(\overline{ab}\) ⋮ 37
200281 + 19 + \(\overline{ab}\) ⋮ 37
19 + \(\overline{ab}\) ⋮ 37
19 + \(\overline{ab}\) \(\in\) B(37) = {0; 37; 74; 111; 148;...;}
\(\overline{ab}\) \(\in\) {-19; 18; 55; 92; 129;...;}
Vậy \(\overline{ab}\) \(\in\) {18; 55; 92}
Gọi số cần tìm là \(X=\overline{abc}\)
Theo đề, ta có: X-7 chia hết cho 8 và X-1 chia hết cho 31 và 100<=X<=999; X lớn nhất
=>X=807
Gọi số cần tìm là a . ( a \(\in\)N ; a \(\le\)999 )
Theo đề bài , ta có :
a : 8 dư 7 \(\Rightarrow\)( a + 1 ) \(⋮\)8 .
a : 31 dư 28 \(\Rightarrow\)( a + 3 ) \(⋮\)28
Ta thấy : ( a + 1 ) + 64 \(⋮\)8 = ( a + 3 ) + 62 \(⋮\) 31
\(\Rightarrow\)a + 65 \(⋮\)8 và 31
Mà ( 8 ; 31 ) = 1
\(\Rightarrow\)a + 65 \(⋮\) 248
Vì a \(\le\)999 \(\Rightarrow\)a + 65 \(\le\)1064
Để a là số tự nhiên lớn nhất thỏa mãn điều kiện thì cũng là số tự nhiên lớn nhất thỏa mãn \(\frac{a+56}{248}=4\)
\(\Rightarrow a=927\)
Vậy số cần tìm là \(927\)
1. Câu hỏi của buikhanhphuong - Toán lớp 6 - Học toán với OnlineMath
kho ua
a : 8 dư 7 => a - 7 chia hết cho 8 => \(a-7\in B\left(8\right)\)
a : 31 dư 28 => a - 28 chia hết cho 31 => \(a-28\in B\left(31\right)\)
a + 1 chia hết cho 8 => \(a+1\in B\left(8\right)\)
a + 3 chia hết cho 37 => \(a+3\in B\left(37\right)\)