Ưu đãi 1000 suất VIP đến hết ngày 9/9. Xem ngay!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho f(x) thõa mãn f(1)+f(2)+f(3)+...+f(n)=\(n^2\)f(n) biết f(1)=151,2015
tính f(2015)
Cho f(x) thỏa mãn f(1)=1,f(2)=3,f(n)+f(x+2)=2f(n+1) Tính f(1)+f(2)+...+f(2019)
cho hàm số f(x) thỏa mãn f(1)=1,f(2)=3,f(n)+f(n+2)=2*f(n+1) với mọi số nguyên dương n.tính f(1)+f(2)+...+f(2019)
Cho hàm số f thỏa mãn: f(1)=1; f(2)=3;f(n)+f(n+2)=2f(n+1) với mọi số nguyên dương n. Vậy f(1)+f(2)+...+f(30) bằng
Cho f ( n ) = ( n 2 + n + 1 ) 2 ∀ n ∈ N * Đặt u n = f ( 1 ) . f ( 3 ) . . . f ( 2 n - 1 ) f ( 2 ) . f ( 4 ) . . . f ( 2 n ) .
Tìm số n nguyên dương nhỏ nhất sao cho u n thỏa mãn điều kiện log 2 u n + u n < - 10239 1024 .
A. n=23
B. n=29
C. n=21
D. n=33
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Cho f ( n ) = ( n 2 + n + 1 ) 2 v ớ i ∀ n ∈ N * . Đặt u n = f ( 1 ) . f ( 3 ) . . . f ( 2 n - 1 ) f ( 2 ) . f ( 4 ) . . . f ( 2 n ) .
Tìm số n nguyên dương nhỏ nhất sao cho u n , thỏa mãn điều kiện log 2 u n + u n < - 10239 1024 .
A. n = 23
B. n = 29
C. n = 21
D. n = 33
A
Cho đa thức f(x) có bậc 2 thỏa mãn: f(0) = 2010; f(1) - f(0) = 1; f(-1) - f(1) = 1. a) Chứng minh rằng: f(2) = 2015. b) Tìm số chính phương m để f(2m) - f(2) - f(0) = 5m2 - 3m - 1. (biết "số chính phương là bình phương của một số nguyên")
Câu hỏi của Lucy Hearthfilia - Toán lớp 7 | Học trực tuyến
cho hàm số f(x) xác định trên tập N biết f(2)=0, f(3)>0, f(2001)=667 và f(m)+f(n)<=f(m+n)<=f(m)+f(n)+1
Cho đa thức f(x) thõa mãn f(x) +x.f (-x)=x +2015 với mọi giá trị của x .Tính f(-x)