Xác định a và b để đa thức f(x)=\(X^4-9x^3+21x^2+ax+b\) chia hết cho đa thức g(x)=\(X^2-x-2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Thực hiện phép chia đa thức \(f\left(x\right)\) cho \(g\left(x\right)\) ta được
\(x^4-9x^3+21x^2+x+a=\left(x^2-x-2\right)\left(x^2-8x+15\right)+a+30\)
Do đó dư của phép chia \(f\left(x\right)\) cho \(g\left(x\right)\) là \(a+30\).
a) Với \(a=-100\) dư của phép chia đa thức \(f\left(x\right)\) và \(g\left(x\right)\) là \(-100+30=-70\).
b) Để \(f\left(x\right)\) chia hết cho \(g\left(x\right)\) thì \(a+30=0\Leftrightarrow a=-30\).
![](https://rs.olm.vn/images/avt/0.png?1311)
P/s: hình như sai tí đấy bạn, đa thức ở dưới phải là \(g\left(x\right)=x^2-x-2\)
Ta có: \(x^2-x-2=\left(x-2\right)\left(x+1\right)\)
Như vậy nếu f(x)chia hết cho \(x^2-x-2,\)thì cũng chia hết cho (x-2)(x+1) . Áp dụng định lí Bezout và định nghĩa phép chia hết, ta thay x=-1 vào \(f\left(x\right):f\left(-1\right)=1+19+21-1+k=0\Rightarrow k=-30\)
Bổ sung cách 1 cho Khả Tâm
Lấy \(\frac{f(x)}{g(x)}\)để tìm số dư và đạt số dư bằng 0 để tìm k.
Ta có : \(x^4-9x^3+21x^2+x+k=\left[x^2-x-2\right]\left[x^2-8x+15\right]+k+30\)
\(f(x)⋮g(x)\)thì cần và đủ là : \(r(x)=k+30=0\Rightarrow k=-30\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(\Leftrightarrow4x^3+16x^2+28x-x^2-4x-7+10+a⋮x^2+4x+7\)
hay a=-10