Tìm hai số tự nhiên a, b biết a + b = 189 và ước chung lớn nhất của chúng bằng 21
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Hướng dẫn cách làm :
Tìm hai số tự nhiên a, b biết : a+b = 189 và ước chung lớn nhất của chúng bằng 21.
=> Với n là số tự nhiên, chứng minh phân số .
Cho a,b là các số nguyên:
Chứng minh rằng nếu (3a+2b)⋮17 thì (10a+b)⋮17
=> Cách làm
![](https://rs.olm.vn/images/avt/0.png?1311)
giả sử a nhỏ hơn hoặc b
theo bài ra : a+b=128 ;(a,b)=16
(a,b)=16=>a=16m ;b=16n (m,nthuộc N ; m nhỏ hơn hoặc bằng n ; (m,n)=1)
=>a.b =16m+16n =>128=16(m+n)=> 8=m+n
lập bẳng giá trị :
m 1 3
n 7 5
a 16 48
b 112 80
a+b 128 128
vậy 2 số a,b cần tìm là :(16;112);(112;16);(48;80);(80;48)
Vì UCLN ( a,b ) = 16 nên a = 16a1 , b = 16b1
(a1 , b1) = 1 , a1,b1 € N*
Mà a + b = 128
=> thay a = 16a1 , b = 16b1 , ta có :
16a1 + 16b1 = 128
16 ( a1 + b1 ) = 128
a1 + b1 = 128 : 16
a1 + b1 = 8
Sau đó bn vẽ bảng thử chọn a,b ( tự lm nhé ) nhớ căn cứ ( a1 , b1 ) = 1 để tự chọn
Lưu ý : € : thuộc
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
Vì $ƯCLN(a,b)=21$ nên đặt $a=21x, b=21y$ với $x,y$ là stn, $x,y$ nguyên tố cùng nhau.
Ta có:
$BCNN(a,b)=21xy=420\Rightarrow xy=20$ (1)
$a+21=b$
$\Rightarrow 21x+21=21y$
$\Rightarrow x+1=y$ (2)
Từ $(1); (2)$ và $x,y$ là 2 số nguyên tố cùng nhau nên $x=4, y=5$
$\Rightarrow a=21x=21.4=84; b=21y=21.5=105$