định a và b để đa thức A = x^4 - 6x^3 + ax^ax + bx + 1 là bình phương của một đa thức khác
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bạn tham khảo tại đây:
Câu hỏi của Nguyễn Phan Thục Trinh - Toán lớp 8 - Học toán với OnlineMath


Lời giải:
Đặt $A=(mx^2+nx+1)^2$
$\Leftrightarrow x^4-6x^3+ax^2+bx+1=m^2x^4+n^2x^2+1+2mnx^3+2mx^2+2nx
$=m^2x^4+2mnx^3+x^2(n^2+2m)+2nx+1$
Đồng nhất hệ số: \(\left\{\begin{matrix} m^2=1\\ 2mn=-6\\ n^2+2m=a\\ 2n=b\end{matrix}\right.\)\(\Leftrightarrow \left\{\begin{matrix} m=\pm 1(1)\\ mn=-3(2)\\ n^2+2m=a(3)\\ 2n=b(4)\end{matrix}\right.\)
Từ $(1);(2)\Rightarrow (m,n)=(1,-3); (-1;3)$
Nếu $(m,n)=(1,-3)$:
Từ $(3);(4)\Rightarrow a=11; b=-6$
Nếu $(m,n)=(-1,3)$
Từ $(3);(4)\Rightarrow a=7; b=6$
Vậy.............

\(A=x^4-6x^3+ax^2+bx+1\)
Để A là bình phương của 1 đa thức thì \(A=\left(x^2+cx+1\right)^2\)
\(\Rightarrow A=x^4+c^2x^2+1+2cx^3+2x^2+2cx\)
\(=x^4+2cx^3+\left(2+c^2\right)x^2+2cx+1\)
Đồng nhất hệ số ta có: \(\hept{\begin{cases}2c=-6\\2+c^2=a\\2c=b\end{cases}}\Leftrightarrow\hept{\begin{cases}c=-3\\2+\left(-3\right)^2=a\\2.\left(-3\right)=b\end{cases}}\Leftrightarrow\hept{\begin{cases}c=-3\\a=2+9\\b=-6\end{cases}}\Leftrightarrow\hept{\begin{cases}c=-3\\a=11\\b=-6\end{cases}}\)
Vậy \(a=11\)và \(b=-6\)