trên mặp phẳng tọa độ oxy cho 2 điểm A(-4: -3) : B(2: 1/3). Hãy giải thích vì sao A,B,O thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Vt pt dg thẳng đi qua A và B.. sau đó thay tọa độ của gốc tọa độ O vào thấy thỏa nên thẳng hàng
![](https://rs.olm.vn/images/avt/0.png?1311)
Đường thẳng OA có dạng: y=ax(d)
=>OA đi qua A=>-3=-4a=>a=3/4 =>(d): y=3/4x
Đường thẳng OB có dạng y=a'x(d')
=>OB đi qua B => 3/2=2a => a=3/4 =>(d'): t=3/4x
Suy ra: OA và OB trùng nhau =>O,A,B thẳng hàng
![](https://rs.olm.vn/images/avt/0.png?1311)
Trước hết ta đi tìm phương trình đường thẳng MN.
Gọi phương trình đường thẳng MN là \(MN:y=ax+b\).
Do \(M\in MN\) nên \(2=-3a+b\) \(\Leftrightarrow b=3a+2\) (1)
Mặt khác \(N\in MN\) nên \(-2=3a+b\) (2)
Từ (1) và (2) \(\Rightarrow-2=3a+3a+2\) \(\Leftrightarrow6a=-4\) \(\Leftrightarrow a=-\dfrac{2}{3}\)
Từ đó \(\Rightarrow b=3.\left(-\dfrac{2}{3}\right)+2=0\) . Vậy đường thẳng MN chính là đường thẳng \(y=-\dfrac{2}{3}x\) đi qua gốc tọa độ O. Từ đây suy ra M, O, N thẳng hàng.
![](https://rs.olm.vn/images/avt/0.png?1311)
vì đồ thị của hàm số y = ax (a khác 0 ) là 1 đường thẳng đi qua góc tọa độ nên 3 điểm 0;m;n là 1 đường thẳng
![](https://rs.olm.vn/images/avt/0.png?1311)
Muốn biết ba điểm có thẳng hàng hay không, ta xét chúng cùng thuộc một đồ thị hàm số hay không
Xét A(-3 ; 5)
=> xA = -3 ; yA = 5
=> 5 = a.(-3)
=> a = -5/3
=> A(-3 ; 5) thuộc đồ thị hàm số \(y=-\frac{5}{3}x\)( 1 )
Xét B( 2 ; -3 )
=> xB = 2 ; yB = -3
=> -3 = a.2
=> a = -3/2
=> B thuộc đồ thị hàm số \(y=-\frac{3}{2}x\)( 2 )
Xét C( 0, 6 ; -1 )
=> xC = 0, 6 ; yC = -1
=> -1 = a . 0, 6
=> a = \(\frac{-1}{0,6}=\frac{-1}{\frac{3}{5}}=-\frac{5}{3}\)
=> C( 0, 6 ; -1 ) thuộc đồ thị hàm số \(y=-\frac{5}{3}x\)( 3 )
Từ ( 1 ) , ( 2 ) và ( 3 )
=> Ba điểm A, B, C không thẳng hàng ( vì ba điểm không cùng thuộc một đồ thị hàm số )
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Tự làm
b) Vt pt dường thẳng đi qua 2 trong 3 điểm trên rùi thay tọa độ của điểm còn lại nếu thỏa mãn thì 3 điểm đó thẳng hàng, ngược lại thì ko
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có: \(\overrightarrow {AB} = (3 - 1;4 - 2) = (2;2)\) và \(\overrightarrow {CD} = (6 - ( - 1);5 - ( - 2)) = (7;7)\)
b) Dễ thấy: \((2;2) = \frac{2}{7}.(7;7)\)\( \Rightarrow \overrightarrow {AB} = \frac{2}{7}.\overrightarrow {CD} \)
Vậy hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {CD} \) cùng phương.
c) Ta có: \(\overrightarrow {AC} = ( - 1 - 1; - 2 - 2) = ( - 2; - 4)\) và \(\overrightarrow {BE} = (a - 3;1 - 4) = (a - 3; - 3)\)
Để \(\overrightarrow {AC} \) và \(\overrightarrow {BE} \) cùng phương thì \(\frac{{a - 3}}{{ - 2}} = \frac{{ - 3}}{{ - 4}}\)\( \Leftrightarrow a - 3 = - \frac{3}{2}\)\( \Leftrightarrow a = \frac{3}{2}\)
Vậy \(a = \frac{3}{2}\) hay \(E\left( {\frac{3}{2};1} \right)\) thì hai vectơ \(\overrightarrow {AC} \) và \(\overrightarrow {BE} \) cùng phương
d)
Cách 1:
Ta có: \(\overrightarrow {BE} = \left( {\frac{3}{2} - 3; - 3} \right) = \left( { - \frac{3}{2}; - 3} \right)\) ; \(\overrightarrow {AC} = ( - 2; - 4)\)
\( \Rightarrow \overrightarrow {BE} = \frac{3}{4}.\overrightarrow {AC} \)
Mà \(\overrightarrow {AE} = \overrightarrow {AB} + \overrightarrow {BE} \) (quy tắc cộng)
\( \Rightarrow \overrightarrow {AE} = \overrightarrow {AB} + \frac{3}{4}.\overrightarrow {AC} \)
Cách 2:
Giả sử \(\overrightarrow {AE} = m\,.\,\overrightarrow {AB} + n\,.\,\overrightarrow {AC} \)(*)
Ta có: \(\overrightarrow {AE} = \left( {\frac{1}{2}; - 1} \right)\), \(m\,.\,\overrightarrow {AB} = m\left( {2;2} \right) = (2m;2m)\), \(n\,.\,\overrightarrow {AC} = n( - 2; - 4) = ( - 2n; - 4n)\)
Do đó (*) \( \Leftrightarrow \left( {\frac{1}{2}; - 1} \right) = (2m;2m) + ( - 2n; - 4n)\)
\(\begin{array}{l} \Leftrightarrow \left( {\frac{1}{2}; - 1} \right) = (2m - 2n;2m - 4n)\\ \Leftrightarrow \left\{ \begin{array}{l}\frac{1}{2} = 2m - 2n\\ - 1 = 2m - 4n\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m = 1\\n = \frac{3}{4}\end{array} \right.\end{array}\)
Vậy \(\overrightarrow {AE} = \overrightarrow {AB} + \frac{3}{4}.\overrightarrow {AC} \)
vì 3 điểm đó cùng thuộc 1 đồ thị của hàm số