chứng minh: K=1/3+2/3^2+...+2008/3^2008 <3/4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.




Đặt A =\(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{2008}{3^{2008}}\)
Suy ra 3A = \(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{2008}{3^{2007}}\)=> 2A = 3A - A = \(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{2008}{3^{2007}}-\frac{1}{3}-\frac{2}{3^2}-\frac{3}{3^3}-...-\frac{2008}{3^{3008}}\)= \(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2007}}-\frac{2008}{3^{2008}}\)
= \(\frac{3}{2}-\frac{1}{2.3^{2007}}\)Suy ra A = \(\frac{3}{4}-\frac{1}{8.3^{2007}}\)<\(\frac{3}{4}\)(ĐPCM)


Ta có:
\(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{\sqrt{n^2}}-\frac{1}{\sqrt{\left(n+1\right)^2}}\right)\)
\(=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(< \left(1+1\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)=2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
Áp dụng vào bài toán ta được
\(\frac{1}{2}+\frac{1}{3\sqrt{2}}+...+\frac{1}{2009\sqrt{2008}}\)
\(=2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2008}}-\frac{1}{\sqrt{2009}}\right)\)
\(=2\left(1-\frac{1}{\sqrt{2009}}\right)< 2\)

