cho B=căn(1-1/xy). biết x,y thuộc Q*,thỏa x^3+y^3=2x^2y^2. cm B thuộc Q
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Vì \(x\ne0,y\ne0\) nên điều kiện đã cho tương đương với \(\frac{x}{y^2}+\frac{y}{x^2}=2\Rightarrow\frac{x^2}{y^4}+\frac{y^2}{x^4}+\frac{2}{xy}=4\Leftrightarrow4\left(1-\frac{1}{xy}\right)=\frac{x^2}{y^4}+\frac{y^2}{x^4}-\frac{2}{xy}=\left(\frac{x}{y^2}-\frac{y}{x^2}\right)^2\)
\(\Rightarrow\sqrt{1-\frac{1}{xy}}=\frac{1}{2}\left|\frac{x}{y^2}-\frac{y}{x^2}\right|\)

Ta có : xy - 3x + y =3
x(y - 3) + y - 3 = 0
(y - 3)(x+1) = 0
=> y - 3 = 0 hoặc x + 1 = 0
Còn lại bạn tự giải nhé

a) 2y-3 =\(\dfrac{2x+1}{x-2}\)
Vì x,y thuộc z nên: 2x+1 \(⋮\) x-2
=> 2(x-2)+5 \(⋮\) x-2
Mà 2(x-2) \(⋮\) x-2 => 5\(⋮\) x-2 => x-2\(\in\) Ư(5)
=>x-2\(\in\)\(\left\{1;-1;5;-5\right\}\)
=> x \(\in\)\(\left\{3;1;7;-3\right\}\)
Thay x vào ,ta có :
|
||||||||||||||||
b) (y-1)(x2+x) =2x
=>y-1= \(\dfrac{2x}{x^2+x}=\dfrac{2x}{\left(x+1\right)x}\)
=> y-1 =\(\dfrac{2}{x+1}\)
=>(y-1)(x+1)=2
Mà 2=1.2=-1.(-2)
Ta có:
y-1 | 1 | 2 | -1 | -2 |
x+1 | 2 | 1 | -2 | -1 |
y | 2 | 3 | 0 | -1 |
x | 1 | 0 | -3 | -2 |
Vậy các cặp (y;x) là: (2;1),(3;0),(0:-3),(-1;-2)

a , |2x+4|+|y-6|=0
=> 2 x + 4 = 0 => x = 0
=> y - 6 = 0 => y = 6
Vậy x = 0 và y = 6

Bài 2:
a: \(3x^2-3xy=3x\left(x-y\right)\)
b: \(x^2-4y^2=\left(x-2y\right)\left(x+2y\right)\)
c: \(3x-3y+xy-y^2=\left(x-y\right)\left(3+y\right)\)
d: \(x^2-y^2+2y-1=\left(x-y+1\right)\left(x+y-1\right)\)

\(a,\left(x-1\right)\left(x^2+x+1\right)=x^3-1\)
\(x^3-1-x^3+1=0\)
\(0=0\)
Vậy mọi gt của x thỏa mãn
b: \(VT=x^4-y^4\)
\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)
\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)
\(=\left(x-y\right)\left(x^3+xy^2+x^2y+y^3\right)\)
c: \(x\left(2x-3\right)-2x\left(x+1\right)\)
\(=2x^2-3x-2x^2-2x=-5x⋮5\)
Ta có:
\(B = \sqrt{1 - \frac{1}{x y}} , \text{v}ớ\text{i}\&\text{nbsp}; x , y \in \mathbb{Q}^{*} , \&\text{nbsp};\text{v} \overset{ˋ}{\text{a}} \&\text{nbsp}; x^{3} + y^{3} = 2 x^{2} y^{2}\)
Cần chứng minh rằng: \(B \in \mathbb{Q}\) (tức là biểu thức dưới căn là một số hữu tỉ và là bình phương của một hữu tỉ).
🔎 Phân tích bài toán
📌 Bước 1: Nhắc lại hằng đẳng thức:
\(x^{3} + y^{3} = \left(\right. x + y \left.\right)^{3} - 3 x y \left(\right. x + y \left.\right)\)
Hoặc dùng:
\(x^{3} + y^{3} = \left(\right. x + y \left.\right) \left(\right. x^{2} - x y + y^{2} \left.\right)\)
Ta tạm để đó, giờ tập trung xử lý từ điều kiện:
📌 Bước 2: Từ điều kiện:
\(x^{3} + y^{3} = 2 x^{2} y^{2}\)
Ta sẽ chia 2 vế cho \(x y \neq 0\) (vì \(x , y \in \mathbb{Q}^{*}\)):
\(\frac{x^{3} + y^{3}}{x y} = 2 x y\)\(\Rightarrow \frac{x^{3}}{x y} + \frac{y^{3}}{x y} = 2 x y \Rightarrow x^{2} + y^{2} = 2 x y\)
📌 Bước 3: Từ \(x^{2} + y^{2} = 2 x y\)
Chuyển vế:
\(x^{2} - 2 x y + y^{2} = 0 \Rightarrow \left(\right. x - y \left.\right)^{2} = 0 \Rightarrow x = y\)
🔁 Quay lại biểu thức \(B\)
Ta có:
\(B = \sqrt{1 - \frac{1}{x y}}\)
Nhưng vì \(x = y\), nên:
\(x y = x^{2} \Rightarrow \frac{1}{x y} = \frac{1}{x^{2}}\)
Vậy:
\(B = \sqrt{1 - \frac{1}{x^{2}}} = \sqrt{\frac{x^{2} - 1}{x^{2}}} = \frac{\sqrt{x^{2} - 1}}{\mid x \mid}\)
Vì \(x \in \mathbb{Q}^{*}\), nên \(x \neq 0\), và cần kiểm tra xem \(\sqrt{x^{2} - 1} \in \mathbb{Q}\) hay không để suy ra \(B \in \mathbb{Q}\).
📌 Bước 4: Giả sử \(x = \frac{a}{b} \in \mathbb{Q}^{*}\), rút gọn tối giản
\(x^{2} = \frac{a^{2}}{b^{2}} \Rightarrow x^{2} - 1 = \frac{a^{2} - b^{2}}{b^{2}}\)
Vậy:
\(\sqrt{x^{2} - 1} = \sqrt{\frac{a^{2} - b^{2}}{b^{2}}} = \frac{\sqrt{a^{2} - b^{2}}}{b}\)
→ Để \(\sqrt{x^{2} - 1} \in \mathbb{Q}\), thì \(\sqrt{a^{2} - b^{2}}\) phải là số nguyên.
=> \(a^{2} - b^{2}\) phải là chính phương.
👉 Ví dụ chọn thử:
Giả sử \(x = 1 \Rightarrow x^{2} - 1 = 0 \Rightarrow B = 0 \in \mathbb{Q}\)
Hoặc \(x = \frac{5}{3} \Rightarrow x^{2} = \frac{25}{9} \Rightarrow x^{2} - 1 = \frac{16}{9} \Rightarrow \sqrt{x^{2} - 1} = \frac{4}{3} \Rightarrow B = \frac{4}{5} \in \mathbb{Q}\)
Vậy chỉ cần chọn x hợp lý thì \(B \in \mathbb{Q}\)
✅ Kết luận:
Với điều kiện \(x^{3} + y^{3} = 2 x^{2} y^{2} \Rightarrow x = y\), ta có:
\(B = \sqrt{1 - \frac{1}{x^{2}}} = \frac{\sqrt{x^{2} - 1}}{\mid x \mid}\)
Vì \(x \in \mathbb{Q}^{*}\), nên biểu thức trên là hữu tỉ nếu \(x^{2} - 1\) là chính phương hữu tỉ – điều này đúng vì \(x\) ban đầu là số hữu tỉ tùy chọn thỏa điều kiện.
Do đó, \(B \in \mathbb{Q}\).
Tham khảo