K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9

Ta có:

\(B = \sqrt{1 - \frac{1}{x y}} , \text{v}ớ\text{i}\&\text{nbsp}; x , y \in \mathbb{Q}^{*} , \&\text{nbsp};\text{v} \overset{ˋ}{\text{a}} \&\text{nbsp}; x^{3} + y^{3} = 2 x^{2} y^{2}\)

Cần chứng minh rằng: \(B \in \mathbb{Q}\) (tức là biểu thức dưới căn là một số hữu tỉ và là bình phương của một hữu tỉ).


🔎 Phân tích bài toán

📌 Bước 1: Nhắc lại hằng đẳng thức:

\(x^{3} + y^{3} = \left(\right. x + y \left.\right)^{3} - 3 x y \left(\right. x + y \left.\right)\)

Hoặc dùng:

\(x^{3} + y^{3} = \left(\right. x + y \left.\right) \left(\right. x^{2} - x y + y^{2} \left.\right)\)

Ta tạm để đó, giờ tập trung xử lý từ điều kiện:

📌 Bước 2: Từ điều kiện:

\(x^{3} + y^{3} = 2 x^{2} y^{2}\)

Ta sẽ chia 2 vế cho \(x y \neq 0\) (vì \(x , y \in \mathbb{Q}^{*}\)):

\(\frac{x^{3} + y^{3}}{x y} = 2 x y\)\(\Rightarrow \frac{x^{3}}{x y} + \frac{y^{3}}{x y} = 2 x y \Rightarrow x^{2} + y^{2} = 2 x y\)


📌 Bước 3: Từ \(x^{2} + y^{2} = 2 x y\)

Chuyển vế:

\(x^{2} - 2 x y + y^{2} = 0 \Rightarrow \left(\right. x - y \left.\right)^{2} = 0 \Rightarrow x = y\)


🔁 Quay lại biểu thức \(B\)

Ta có:

\(B = \sqrt{1 - \frac{1}{x y}}\)

Nhưng vì \(x = y\), nên:

\(x y = x^{2} \Rightarrow \frac{1}{x y} = \frac{1}{x^{2}}\)

Vậy:

\(B = \sqrt{1 - \frac{1}{x^{2}}} = \sqrt{\frac{x^{2} - 1}{x^{2}}} = \frac{\sqrt{x^{2} - 1}}{\mid x \mid}\)

Vì \(x \in \mathbb{Q}^{*}\), nên \(x \neq 0\), và cần kiểm tra xem \(\sqrt{x^{2} - 1} \in \mathbb{Q}\) hay không để suy ra \(B \in \mathbb{Q}\).


📌 Bước 4: Giả sử \(x = \frac{a}{b} \in \mathbb{Q}^{*}\), rút gọn tối giản

\(x^{2} = \frac{a^{2}}{b^{2}} \Rightarrow x^{2} - 1 = \frac{a^{2} - b^{2}}{b^{2}}\)

Vậy:

\(\sqrt{x^{2} - 1} = \sqrt{\frac{a^{2} - b^{2}}{b^{2}}} = \frac{\sqrt{a^{2} - b^{2}}}{b}\)

→ Để \(\sqrt{x^{2} - 1} \in \mathbb{Q}\), thì \(\sqrt{a^{2} - b^{2}}\) phải là số nguyên.

=> \(a^{2} - b^{2}\) phải là chính phương.

👉 Ví dụ chọn thử:

Giả sử \(x = 1 \Rightarrow x^{2} - 1 = 0 \Rightarrow B = 0 \in \mathbb{Q}\)

Hoặc \(x = \frac{5}{3} \Rightarrow x^{2} = \frac{25}{9} \Rightarrow x^{2} - 1 = \frac{16}{9} \Rightarrow \sqrt{x^{2} - 1} = \frac{4}{3} \Rightarrow B = \frac{4}{5} \in \mathbb{Q}\)

Vậy chỉ cần chọn x hợp lý thì \(B \in \mathbb{Q}\)


✅ Kết luận:

Với điều kiện \(x^{3} + y^{3} = 2 x^{2} y^{2} \Rightarrow x = y\), ta có:

\(B = \sqrt{1 - \frac{1}{x^{2}}} = \frac{\sqrt{x^{2} - 1}}{\mid x \mid}\)

Vì \(x \in \mathbb{Q}^{*}\), nên biểu thức trên là hữu tỉ nếu \(x^{2} - 1\) là chính phương hữu tỉ – điều này đúng vì \(x\) ban đầu là số hữu tỉ tùy chọn thỏa điều kiện.

Do đó, \(B \in \mathbb{Q}\).

3 tháng 9

Tham khảo

30 tháng 7 2020

Vì \(x\ne0,y\ne0\) nên điều kiện đã cho tương đương với \(\frac{x}{y^2}+\frac{y}{x^2}=2\Rightarrow\frac{x^2}{y^4}+\frac{y^2}{x^4}+\frac{2}{xy}=4\Leftrightarrow4\left(1-\frac{1}{xy}\right)=\frac{x^2}{y^4}+\frac{y^2}{x^4}-\frac{2}{xy}=\left(\frac{x}{y^2}-\frac{y}{x^2}\right)^2\)

\(\Rightarrow\sqrt{1-\frac{1}{xy}}=\frac{1}{2}\left|\frac{x}{y^2}-\frac{y}{x^2}\right|\)

1 tháng 11 2017

Ta có : xy - 3x + y =3

           x(y - 3) + y - 3 = 0

           (y - 3)(x+1) = 0

=> y - 3 = 0 hoặc x + 1 = 0

Còn lại bạn tự giải nhé

           

28 tháng 9 2017

a) 2y-3 =\(\dfrac{2x+1}{x-2}\)

Vì x,y thuộc z nên: 2x+1 \(⋮\) x-2

=> 2(x-2)+5 \(⋮\) x-2

Mà 2(x-2) \(⋮\) x-2 => 5\(⋮\) x-2 => x-2\(\in\) Ư(5)

=>x-2\(\in\)\(\left\{1;-1;5;-5\right\}\)

=> x \(\in\)\(\left\{3;1;7;-3\right\}\)

Thay x vào ,ta có :

x 3 1 7 -3
2y-3 7 -3 3 1
y 5 0 3 2

28 tháng 9 2017

b) (y-1)(x2+x) =2x

=>y-1= \(\dfrac{2x}{x^2+x}=\dfrac{2x}{\left(x+1\right)x}\)

=> y-1 =\(\dfrac{2}{x+1}\)

=>(y-1)(x+1)=2

Mà 2=1.2=-1.(-2)

Ta có:

y-1 1 2 -1 -2
x+1 2 1 -2 -1
y 2 3 0 -1
x 1 0 -3 -2

Vậy các cặp (y;x) là: (2;1),(3;0),(0:-3),(-1;-2)

20 tháng 1 2018

a , |2x+4|+|y-6|=0

=> 2 x + 4 = 0 => x = 0 

=> y - 6 = 0 => y = 6

Vậy x = 0 và y = 6

20 tháng 1 2018

a. 2x+4= 2.0+4=4
y-6=2-6=-4

=)) l4l;l-4l

12 tháng 10 2021

Bài 2: 

a: \(3x^2-3xy=3x\left(x-y\right)\)

b: \(x^2-4y^2=\left(x-2y\right)\left(x+2y\right)\)

c: \(3x-3y+xy-y^2=\left(x-y\right)\left(3+y\right)\)

d: \(x^2-y^2+2y-1=\left(x-y+1\right)\left(x+y-1\right)\)

18 tháng 10 2021

ỳtct7ct7c7c7t79tc9

 

31 tháng 7 2018

\(a,\left(x-1\right)\left(x^2+x+1\right)=x^3-1\)

\(x^3-1-x^3+1=0\)

\(0=0\)

Vậy mọi gt của x thỏa mãn

b: \(VT=x^4-y^4\)

\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)

\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)

\(=\left(x-y\right)\left(x^3+xy^2+x^2y+y^3\right)\)

c: \(x\left(2x-3\right)-2x\left(x+1\right)\)

\(=2x^2-3x-2x^2-2x=-5x⋮5\)