giup toi voi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


A = \(\dfrac{2x-1}{x+2}\)
a, A là phân số ⇔ \(x\) + 2 # 0 ⇒ \(x\) # -2
b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2
⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2
⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2
⇒ 5 ⋮ \(x\) + 2
⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}
⇒ \(x\) \(\in\) { -7; -3; -1; 3}
c, A = \(\dfrac{2x-1}{x+2}\)
A = 2 - \(\dfrac{5}{x+2}\)
Với \(x\) \(\in\) Z và \(x\) < -3 ta có
\(x\) + 2 < - 3 + 2 = -1
⇒ \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\) = -5 ⇒ - \(\dfrac{5}{x+2}\)< 5
⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)
Với \(x\) > -3; \(x\) # - 2; \(x\in\) Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1
\(\dfrac{5}{x+2}\) > 0 ⇒ - \(\dfrac{5}{x+2}\) < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)
Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)
Kết hợp (1); (2) và(3) ta có A(max) = 7 ⇔ \(x\) = -3

Có: 20>0 và x^2 lớn hơn hoặc bằng 0
=>20-x^2 lớn hơn hoặc bằng 0.
Để 20-x^2 có giá trị lớn nhất.
=>20-x^2 bé hơn hoặc bằng 20.
Dấu "=" xảy ra khi: x^2=0=>x=0
Vật: Giá trị lớn nhất của A là 20 khi x=0
Giá trị lớn nhất của biểu thức frac{\sqrt{x}}{x+1} là
(Nhập kết quả dưới dạng số thập phân gọn nhất)


P có giá trị số lớn nhất khi (x - 6 ) có giá trị bé nhất.
Giá trị bé nhất của (x - 6 ) là: x - 6 = 1
x = 1 + 6
x = 7
Khi đó giá trị số của biểu thức P là:
P = 2004 + 540 : ( 7 - 6 )
= 2004 + 540
= 2544
a: \(2x^2+2x+3\)
\(=2\left(x^2+x+\frac32\right)\)
\(=2\left(x^2+x+\frac14+\frac54\right)\)
\(=2\left(x+\frac12\right)^2+\frac52\ge\frac52\forall x\)
=>\(\frac{3}{2x^2+2x+3}\le3:\frac52=\frac65\forall x\)
Dấu '=' xảy ra khi \(x+\frac12=0\)
=>\(x=-\frac12\)
b: \(-x^2+2x-2\)
\(=-\left(x^2-2x+2\right)\)
\(=-\left(x^2-2x+1+1\right)\)
\(=-\left(x-1\right)^2-1\le-1\forall x\)
=>\(\frac{1}{-x^2+2x-2}\ge\frac{1}{-1}=-1\forall x\)
Dấu '=' xảy ra khi x-1=0
=>x=1
c: \(3x^2+4x+15\)
\(=3\left(x^2+\frac43x+5\right)\)
\(=3\left(x^2+2\cdot x\cdot\frac23+\frac49+\frac{41}{9}\right)\)
\(=3\left(x+\frac23\right)^2+\frac{41}{3}\ge\frac{41}{3}\forall x\)
=>\(\frac{5}{3x^2+4x+15}\le5:\frac{41}{3}=\frac{15}{41}\)
=>\(-\frac{5}{3x^2+4x+15}\ge-\frac{15}{41}\forall x\)
Dấu '=' xảy ra khi \(x+\frac23=0\)
=>\(x=-\frac23\)
d: \(-4x^2+8x-5\)
\(=-4\left(x^2-2x+\frac54\right)\)
\(=-4\left(x^2-2x+1+\frac14\right)\)
\(=-4\left(x-1\right)^2-1<=-1\forall x\)
=>\(\frac{2}{-4x^2+8x-5}\ge\frac{2}{-1}=-2\forall x\)
Dấu '=' xảy ra khi x-1=0
=>x=1