K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8

Giúp mik với nhé mik cám ơn các bạn ạ

31 tháng 8

Bài toán cho:

  • (1) \(3 a + 5 b \equiv 0 \left(\right. m o d 31 \left.\right)\)
  • (2) \(7 a + 22 b \equiv 0 \left(\right. m o d 31 \left.\right)\)

Bước 1: Giải hệ đồng dư

Từ (1):

\(3 a \equiv - 5 b \left(\right. m o d 31 \left.\right) .\)

=> \(a \equiv - 5 \cdot 3^{- 1} b \left(\right. m o d 31 \left.\right)\).

Phải tìm nghịch đảo của 3 modulo 31.

\(3 \cdot 21 = 63 \equiv 1 \left(\right. m o d 31 \left.\right) .\)

\(3^{- 1} \equiv 21\).

Vậy:

\(a \equiv - 5 \cdot 21 b \left(\right. m o d 31 \left.\right) .\)

Tính: \(- 5 \cdot 21 = - 105\).

Chia cho 31: \(- 105 \equiv - 105 + 4 \cdot 31 = - 105 + 124 = 19\).

\(a \equiv 19 b \left(\right. m o d 31 \left.\right)\).


Bước 2: Thay vào (2)

Thay vào (2):

\(7 a + 22 b \equiv 7 \left(\right. 19 b \left.\right) + 22 b \equiv \left(\right. 133 + 22 \left.\right) b \equiv 155 b \left(\right. m o d 31 \left.\right) .\)

\(155 = 31 \cdot 5\).
\(155 b \equiv 0 \left(\right. m o d 31 \left.\right)\).

Đúng với mọi \(b\).


Bước 3: Kết luận

Vậy nghiệm của hệ là:

\(a \equiv 19 b \left(\right. m o d 31 \left.\right) , b \in \mathbb{Z} .\)

Hay nói cách khác: tồn tại \(k \in \mathbb{Z}\) sao cho

\(a = 19 k , b = k \left(\right. m o d 31 \left.\right) .\)


👉 Kết quả: Các cặp \(\left(\right. a , b \left.\right)\) nguyên thỏa mãn là \(\left(\right. a , b \left.\right) = \left(\right. 19 k + 31 m , \textrm{ } k + 31 n \left.\right)\), với \(k , m , n \in \mathbb{Z}\).

tham khảo

3a+5b⋮31

=>7(3a+5b)⋮31

=>21a+35b⋮31

=>21a+66b-31b⋮31

=>21a+66b⋮31

=>3(7a+22b)⋮31

=>7a+22b⋮31

Giả sử \(\)3a + 5b chia hết cho 31
ta có

\(3a+5b=31k\left(\right.k\in\mathbb{Z}\left.\right)\)

Ta có

\(7a+22b=\left(\right.3a+5b\left.\right)\cdot23\)

\(\left(\right.3a+5b\left.\right)\cdot23=69a+115b\)

\(69 a + 115 b\)\(7 a + 22 b\) chỉ khác nhau một bội của 31 (vì \(69 - 7 = 62 = 31 \cdot 2\), \(115 - 22 = 93 = 31 \cdot 3\))
⇒ Nên chúng có cùng tính chia hết cho 31

Do \(3 a + 5 b\) chia hết cho 31, suy ra \(\) 7a + 22b cũng chia hết cho 31

vậy

7a + 22b chia hết cho 31

9a+22b chia hết cho 7=>9a+22b-7b chia hết cho 7

=>9a+15b chia hết cho 7

=>3(3a+5b) chia hết cho 7

vì (3;7)=1=>3a+5b chia hết cho 7

=>đpcm

27 tháng 3 2019

19 tháng 1 2019

TH
Thầy Hùng Olm
Manager VIP
7 tháng 1 2023

Ta có 6a + 11b chia hết cho 31
Vậy: 6a + 42b - 31b = 6x(a+7b) - 31xb chia hết cho 31
nên: 6x(a + 7b) chia hết cho 31
Do vậy: a + 7b chia hết cho 31 (đpcm)

12 tháng 4 2020

2a+5b chia hết cho 7

=>6a+15b chia hết cho 7 (1)

ta có : nếu giả sử 3a+4b chia hết cho 7

=>6a+8b chia hết cho 7 (2)

Trừ (1) cho (2) ta được (6a+15b)-(6a+8b)=7b chia hết cho 7

 Suy ra 3a+4b chia hết cho 7

12 tháng 4 2020

Ta có: 

( 9 a + 12 b ) - ( 2a + 5b ) = 7a + 7b = 7 (a + b ) chia hết cho 7 

mà ( 2a + 5b ) chia hết cho 7

=> 9a + 12 b chia hết cho 7

=> 3 ( 3a + 4b ) chia hết cho 7 

=> ( 3a + 4b ) chia hết cho 7