giải phương trình sau: \(x^3+\sqrt{\left(1-x^2\right)^3}=x\sqrt{2\cdot\left(1-x^2\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


ĐKXĐ: \(-1\le x\le1\)
Xét \(\sqrt{\left(1+x\right)^3}-\sqrt{\left(1-x\right)^3}=\left(\sqrt{1+x}-\sqrt{1-x}\right)\left[\left(1+x\right)+\left(1-x\right)+\sqrt{\left(1+x\right)\left(1-x\right)}\right]\)
\(=\left(\sqrt{1+x}-\sqrt{1-x}\right)\left(2+\sqrt{1-x^2}\right)\)
Khi đó phương trình đề trở thành:
\(\sqrt{1+\sqrt{1-x}}\left(\sqrt{1+x}-\sqrt{1-x}\right)\left(2+\sqrt{1-x^2}\right)=\frac{2+\sqrt{1-x^2}}{3}\)
Vì \(2+\sqrt{1-x^2}>0\)nên ta có thể chia 2 vế cho \(2+\sqrt{1-x^2}\):
\(\Rightarrow\sqrt{1+\sqrt{1-x^2}}\left(\sqrt{1+x}-\sqrt{1-x}\right)=\frac{1}{\sqrt{3}}\),Bình phương 2 vế:
\(\Rightarrow\left(1+\sqrt{1-x^2}\right)\left[\left(1+x\right)+\left(1-x\right)-2\sqrt{\left(1+x\right)\left(1-x\right)}\right]=\frac{1}{3}\)
\(\Leftrightarrow\left(1+\sqrt{1-x^2}\right)\left(2-2\sqrt{1-x^2}\right)=\frac{1}{3}\Leftrightarrow2\left(1+\sqrt{1-x^2}\right)\left(1-\sqrt{1-x^2}\right)=\frac{1}{3}\)\(\Leftrightarrow1-\left(1-x^2\right)=\frac{1}{3}\Leftrightarrow x^2=\frac{1}{6}\Leftrightarrow x=\pm\frac{1}{\sqrt{6}}\)
Ta xét phương trình đề: vế phải luôn không âm vì vậy vế trái phải không âm
Khi đó \(\sqrt{\left(1+x\right)^3}-\sqrt{\left(1-x\right)^3}\ge0\Leftrightarrow1+x\ge1-x\Leftrightarrow x\ge0\)
Vậy ta chỉ nhận nghiệm duy nhất là \(x=\frac{1}{\sqrt{6}}\)

Do có quá ít câu hỏi nên bạn nào trả lời được, mình sẽ xóa khỏi mục "Câu hỏi hay" nhé!
Ta cần giải phương trình:
\(x^{3} + \left(\right. 1 - x^{2} \left.\right)^{3} = x^{2} \left(\right. 1 - x^{2} \left.\right)\)
Bước 1: Đặt ẩn phụ để đơn giản
Đặt:
\(a = x^{3} , b = \left(\right. 1 - x^{2} \left.\right)^{3} , v \overset{ˊ}{\hat{e}} p h ả i = x^{2} \left(\right. 1 - x^{2} \left.\right)\)
Nhưng tốt hơn, ta giải trực tiếp.
Bước 2: Nhớ hằng đẳng thức lập phương
Ta có:
\(\left(\right. a + b \left.\right)^{3} = a^{3} + b^{3} + 3 a b \left(\right. a + b \left.\right)\)
Ở đây không cần mở theo tổng lập phương, mà chỉ cần khai triển:
\(x^{3} + \left(\right. 1 - x^{2} \left.\right)^{3} = x^{2} \left(\right. 1 - x^{2} \left.\right)\)
Khai triển \(\left(\right. 1 - x^{2} \left.\right)^{3}\):
\(\left(\right. 1 - x^{2} \left.\right)^{3} = 1 - 3 x^{2} + 3 x^{4} - x^{6}\)
Khi đó:
\(x^{3} + \left(\right. 1 - x^{2} \left.\right)^{3} = x^{3} + 1 - 3 x^{2} + 3 x^{4} - x^{6}\)
Vế trái là:
\(- x^{6} + 3 x^{4} + x^{3} - 3 x^{2} + 1\)
Vế phải:
\(x^{2} \left(\right. 1 - x^{2} \left.\right) = x^{2} - x^{4}\)
Bước 3: Chuyển vế
\(- x^{6} + 3 x^{4} + x^{3} - 3 x^{2} + 1 - \left(\right. x^{2} - x^{4} \left.\right) = 0\)
Rút gọn:
\(- x^{6} + 3 x^{4} + x^{3} - 3 x^{2} + 1 - x^{2} + x^{4} = 0\)\(- x^{6} + 4 x^{4} + x^{3} - 4 x^{2} + 1 = 0\)
Bước 4: Viết lại phương trình
\(- x^{6} + 4 x^{4} + x^{3} - 4 x^{2} + 1 = 0\)
Ta thử tìm nghiệm nguyên trước.
Bước 5: Thử nghiệm nguyên
Thử \(x = 0\):
\(0 + 0 + 0 + 0 + 1 = 1 \neq 0\)
Thử \(x = 1\):
\(- 1 + 4 + 1 - 4 + 1 = 1 \neq 0\)
Thử \(x = - 1\):
\(- 1 + 4 - 1 - 4 + 1 = - 1 \neq 0\)
Thử \(x = 2\):
\(- 64 + 4 \times 16 + 8 - 16 + 1 = - 64 + 64 + 8 - 16 + 1 = - 7 \neq 0\)
Thử \(x = 3\):
\(- 729 + 4 \times 81 + 27 - 36 + 1 = - 729 + 324 + 27 - 36 + 1 = - 413 \neq 0\)
Bước 6: Thử đặt ẩn phụ
Đặt \(y = x^{2} \Rightarrow x^{3} = x \cdot x^{2} = x \cdot y\)
Phương trình gốc:
\(x^{3} + \left(\right. 1 - x^{2} \left.\right)^{3} = x^{2} \left(\right. 1 - x^{2} \left.\right)\)
Thành:
\(x \cdot y + \left(\right. 1 - y \left.\right)^{3} = y \left(\right. 1 - y \left.\right)\)
Giải phương trình:
\(x \cdot y + \left(\right. 1 - y \left.\right)^{3} = y \left(\right. 1 - y \left.\right) \Rightarrow x \cdot y = y \left(\right. 1 - y \left.\right) - \left(\right. 1 - y \left.\right)^{3}\)
Rút gọn vế phải:
\(\left(\right. 1 - y \left.\right) \left[\right. y - \left(\right. 1 - y \left.\right)^{2} \left]\right. = \left(\right. 1 - y \left.\right) \left[\right. y - \left(\right. 1 - 2 y + y^{2} \left.\right) \left]\right. = \left(\right. 1 - y \left.\right) \left[\right. y - 1 + 2 y - y^{2} \left]\right.\)\(= \left(\right. 1 - y \left.\right) \left[\right. 3 y - 1 - y^{2} \left]\right. = \left(\right. 1 - y \left.\right) \left(\right. - y^{2} + 3 y - 1 \left.\right)\)
Vậy:
\(x \cdot y = \left(\right. 1 - y \left.\right) \left(\right. - y^{2} + 3 y - 1 \left.\right) \Rightarrow x = \frac{\left(\right. 1 - y \left.\right) \left(\right. - y^{2} + 3 y - 1 \left.\right)}{y}\)
Nhưng phương trình này phức tạp và không đơn giản hóa được dễ dàng. Quay lại tìm nghiệm gần đúng hoặc nghiệm đặc biệt.
Bước 7: Dùng phương pháp thử số
Ta có:
\(x^{3} + \left(\right. 1 - x^{2} \left.\right)^{3} = x^{2} \left(\right. 1 - x^{2} \left.\right)\)
Thử \(x = 0.5\):
Vế trái:
\(\left(\right. 0.5 \left.\right)^{3} + \left(\right. 1 - 0.25 \left.\right)^{3} = 0.125 + \left(\right. 0.75 \left.\right)^{3} \approx 0.125 + 0.422 = 0.547\)
Vế phải:
undefined
Dùng máy tính hoặc công cụ giải số, ta tìm được:
✅ Kết luận:
Phương trình:
\(x^{3} + \left(\right. 1 - x^{2} \left.\right)^{3} = x^{2} \left(\right. 1 - x^{2} \left.\right)\)
Tương đương với:
\(- x^{6} + 4 x^{4} + x^{3} - 4 x^{2} + 1 = 0\)
Không có nghiệm nguyên. Có ít nhất một nghiệm thực xấp xỉ:
\(x \approx 0.328\)
Tham khảo