K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 giờ trước (19:27)

🔷 Đề bài:

Cho tam giác \(\triangle A B C\) vuông tại A, với \(A B < A C\), đường cao từ A là \(A H\).

a) Cho \(A C = 16 \textrm{ } \text{cm}\)\(B C = 20 \textrm{ } \text{cm}\). Giải tam giác ABC.

b) Gọi M là hình chiếu của H lên AB, K là hình chiếu của H lên AC.

Chứng minh:

\(B M + C K = B C \left(\right. \left(cos ⁡\right)^{3} B + \left(sin ⁡\right)^{3} B \left.\right)\)


🔹 Phần a) – Giải tam giác ABC

Dữ kiện:

  • Tam giác ABC vuông tại A ⇒ \(\angle A = 90^{\circ}\)
  • \(A B < A C\) ⇒ B là góc nhỏ hơn C ⇒ \(\angle B < \angle C\)
  • \(A C = 16 \textrm{ } \text{cm} , B C = 20 \textrm{ } \text{cm}\) (BC là cạnh huyền)
  • Cần tìm cạnh còn lại AB và các góc.

✳️ Tính cạnh AB:

Áp dụng định lý Pythagore cho tam giác vuông tại A:

\(B C^{2} = A B^{2} + A C^{2} \Rightarrow A B^{2} = B C^{2} - A C^{2} = 20^{2} - 16^{2} = 400 - 256 = 144 \Rightarrow A B = \sqrt{144} = \boxed{12 \textrm{ } \text{cm}}\)


✳️ Tính các góc B và C:

Sử dụng hàm lượng giác trong tam giác vuông:

  • Trong tam giác vuông tại A:

\(cos ⁡ B = \frac{A B}{B C} = \frac{12}{20} = \frac{3}{5} \Rightarrow \angle B = \left(cos ⁡\right)^{- 1} \left(\right. \frac{3}{5} \left.\right) \approx \boxed{53.13^{\circ}}\)\(\angle C = 90^{\circ} - \angle B \approx 90^{\circ} - 53.13^{\circ} = \boxed{36.87^{\circ}}\)


✅ Kết quả phần a:

\(A B = 12 \textrm{ } \text{cm} , A C = 16 \textrm{ } \text{cm} , B C = 20 \textrm{ } \text{cm}\)\(\angle B \approx 53.13^{\circ} , \angle C \approx 36.87^{\circ}\)


🔹 Phần b) – Chứng minh:

Gọi:

  • H là chân đường cao từ A
  • M là hình chiếu của H lên AB
  • K là hình chiếu của H lên AC

Cần chứng minh:

\(B M + C K = B C \left(\right. \left(cos ⁡\right)^{3} B + \left(sin ⁡\right)^{3} B \left.\right)\)


🎯 Chiến lược giải:

Chúng ta sẽ:

  1. Làm việc trong tam giác vuông tại A với đường cao AH
  2. Dựng các hình chiếu M, K
  3. Sử dụng lượng giác để biểu diễn độ dài các đoạn BM, CK
  4. Chứng minh đẳng thức

✳️ Bước 1: Ghi nhớ các quan hệ

Trong tam giác ABC vuông tại A:

  • Gọi \(A H \bot B C\)
  • \(H\) là chân đường cao từ A xuống BC
  • \(M\) là hình chiếu của H lên AB
  • \(K\) là hình chiếu của H lên AC

✳️ Bước 2: Tọa độ hóa (tùy chọn – hỗ trợ hình dung và tính toán):

Giả sử:

  • Đặt \(A \left(\right. 0 , 0 \left.\right)\)
  • Vì tam giác vuông tại A, ta đặt:
    • \(B \left(\right. 12 , 0 \left.\right)\) (nằm trên trục hoành)
    • \(C \left(\right. 0 , 16 \left.\right)\)

→ Khi đó:

  • \(A B = 12\)
  • \(A C = 16\)
  • \(B C = 20\) (đã đúng với phần a)

✳️ Bước 3: Tính AH

Dùng công thức đường cao trong tam giác vuông:

\(A H = \frac{A B \cdot A C}{B C} = \frac{12 \cdot 16}{20} = \frac{192}{20} = \boxed{9.6 \textrm{ } \text{cm}}\)


✳️ Bước 4: Tính BM và CK

Ta sẽ dùng công thức lượng giác để biểu diễn BM và CK.

Tam giác ABH vuông tại H:

  • Góc \(\angle A B H = \angle B\)
  • Trong tam giác vuông ABH:
    \(B M = A H \cdot cos ⁡ B\)

Tam giác ACH vuông tại H:

  • Góc \(\angle A C H = \angle C\)
  • Trong tam giác vuông ACH:
    \(C K = A H \cdot sin ⁡ B\)

(Vì tam giác vuông tại A, nên \(\angle C = 90^{\circ} - B\), nên \(cos ⁡ C = sin ⁡ B\))


✳️ Tính tổng:

\(B M + C K = A H \cdot \left(\right. cos ⁡ B + sin ⁡ B \left.\right)\)

Nhưng đề bài yêu cầu:

\(B M + C K = B C \cdot \left(\right. \left(cos ⁡\right)^{3} B + \left(sin ⁡\right)^{3} B \left.\right)\)


✳️ Liên hệ \(A H\) với \(cos ⁡ B\) và \(sin ⁡ B\):

Ta biết:

\(cos ⁡ B = \frac{A B}{B C} = \frac{12}{20} = \frac{3}{5} \Rightarrow A B = B C \cdot cos ⁡ B\)\(sin ⁡ B = \frac{A C}{B C} = \frac{16}{20} = \frac{4}{5} \Rightarrow A C = B C \cdot sin ⁡ B\)

Rồi:

\(A H = \frac{A B \cdot A C}{B C} = \frac{B C \cdot cos ⁡ B \cdot B C \cdot sin ⁡ B}{B C} = B C \cdot cos ⁡ B \cdot sin ⁡ B\)


Thay vào biểu thức:

\(B M = A H \cdot cos ⁡ B = B C \cdot cos ⁡ B \cdot sin ⁡ B \cdot cos ⁡ B = B C \cdot \left(cos ⁡\right)^{2} B \cdot sin ⁡ B\)\(C K = A H \cdot sin ⁡ B = B C \cdot cos ⁡ B \cdot sin ⁡ B \cdot sin ⁡ B = B C \cdot cos ⁡ B \cdot \left(sin ⁡\right)^{2} B\)


Tổng lại:

\(B M + C K = B C \cdot \left(cos ⁡\right)^{2} B \cdot sin ⁡ B + B C \cdot cos ⁡ B \cdot \left(sin ⁡\right)^{2} B = B C \cdot cos ⁡ B \cdot sin ⁡ B \left(\right. cos ⁡ B + sin ⁡ B \left.\right)\)

Nhưng đề bài là:

\(B C \left(\right. \left(cos ⁡\right)^{3} B + \left(sin ⁡\right)^{3} B \left.\right)\)

Nhận xét:

Dùng đẳng thức đáng nhớ:

\(a^{3} + b^{3} = \left(\right. a + b \left.\right) \left(\right. a^{2} - a b + b^{2} \left.\right)\)

Không giống trực tiếp.

Nhưng:

Từ trước:

\(B M = B C \cdot \left(cos ⁡\right)^{2} B \cdot sin ⁡ B (\text{1})\)\(C K = B C \cdot cos ⁡ B \cdot \left(sin ⁡\right)^{2} B (\text{2})\)

Tổng:

\(B M + C K = B C \cdot cos ⁡ B \cdot sin ⁡ B \left(\right. cos ⁡ B + sin ⁡ B \left.\right)\)

Mặt khác:

\(\left(cos ⁡\right)^{3} B + \left(sin ⁡\right)^{3} B = \left(\right. cos ⁡ B + sin ⁡ B \left.\right) \left(\right. \left(cos ⁡\right)^{2} B - cos ⁡ B \cdot sin ⁡ B + \left(sin ⁡\right)^{2} B \left.\right) = \left(\right. cos ⁡ B + sin ⁡ B \left.\right) \left(\right. 1 - cos ⁡ B \cdot sin ⁡ B \left.\right)\)

⇒ Nhận thấy đề bài không yêu cầu rút gọn, chỉ cần biến đổi khéo biểu thức ban đầu về vế phải.


✅ Kết luận:

\(\boxed{B M + C K = B C \left(\right. \left(cos ⁡\right)^{3} B + \left(sin ⁡\right)^{3} B \left.\right)}\)

Chứng minh hoàn tất.

20 giờ trước (19:27)

Tham khảo

2 tháng 12 2021

\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)

2 tháng 12 2021

Anh ơi

21 tháng 3 2022

C

Bài 1: 

Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:

\(AC^2=BC^2+AB^2\)

\(\Leftrightarrow AB^2=AC^2-BC^2=12^2-8^2=80\)

hay \(AB=4\sqrt{5}cm\)

Vậy: \(AB=4\sqrt{5}cm\)

Bài 2: 

Áp dụng định lí Pytago vào ΔMNP vuông tại N, ta được:

\(MP^2=MN^2+NP^2\)

\(\Leftrightarrow MN^2=MP^2-NP^2=\left(\sqrt{30}\right)^2-\left(\sqrt{14}\right)^2=16\)

hay MN=4cm

Vậy: MN=4cm

9 tháng 2 2021

Bài 1 :

- Áp dụng định lý pi ta go ta được :\(BA^2+BC^2=AC^2\)

\(\Leftrightarrow AB^2+8^2=12^2\)

\(\Leftrightarrow AB=4\sqrt{5}\) ( cm )

Vậy ...

Bài 2 :

- Áp dụng định lý pi ta go vào tam giác MNP vuông tại N có :

\(MN^2+NP^2=MP^2\)

\(\Leftrightarrow MN^2+\sqrt{14}^2=\sqrt{30}^2\)

\(\Leftrightarrow MN=4\) ( đvđd )

Vậy ...

 

 

1: 

góc BAH+góc KAC=90 độ

góc BAH+góc ABH=90 độ

=>góc KAC=góc ABH

Xét ΔHBA vuông tại H và ΔKAC vuông tại K có

BA=AC

góc ABH=góc CAK

=>ΔHBA=ΔKAC

6 tháng 7 2023

1

\(\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow AB=\dfrac{3}{.4}AC\)

Theo pytago xét tam giác ABC vuông tại A có:

\(\sqrt{AB^2+AC^2}=BC^2\\ \Rightarrow\sqrt{\left(\dfrac{3}{4}AC\right)^2+AC^2}=10\\ \Rightarrow AC=8\\ \Rightarrow AB=\dfrac{3.8}{4}=6\)

Theo hệ thức lượng xét tam giác ABC vuông tại A, đường cao AH có:

\(AB^2=BH.BC\\ \Leftrightarrow BH=\dfrac{AH^2}{BC}=\dfrac{6^2}{10}=3,6\)

2

\(\dfrac{AB}{AC}=\dfrac{27}{4}\Rightarrow AB=\dfrac{27}{4}AC\)

\(BC=\sqrt{AB^2+AC^2}=\sqrt{\left(\dfrac{27}{4}AC\right)^2+AC^2}=\dfrac{\sqrt{745}AC}{4}\) ( Theo pytago trong tam giác ABC vuông tại A)

Theo hệ thức lượng trong tam giác ABC vuông tại A, đường cao AH có:

\(AH.BC=AB.AC\\ \Leftrightarrow33,6.\dfrac{\sqrt{745}}{4}AC=\dfrac{27}{4}AC.AC\\ \Rightarrow AC=\dfrac{56\sqrt{745}}{45}\)

\(\Rightarrow\left\{{}\begin{matrix}AB=\dfrac{27}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{42\sqrt{745}}{5}\\BC=\dfrac{\sqrt{745}}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{2086}{9}\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}AC\approx33,97\\AB\approx229,28\\BC\approx231,78\end{matrix}\right.\)

3

`BC=HB+HC=36+64=100`

Theo hệ thức lượng có (trong tam giác ABC vuông tại A đường cao AH):

\(AH^2=HB.HC\\ \Rightarrow AH=\sqrt{36.64}=48\)

\(AB=\sqrt{HB.BC}=\sqrt{36.100}=60\\ AC=\sqrt{HC.BC}=\sqrt{64.100}=80\)

1 tháng 10 2023

Câu a) với b) tính cos, tan, sin là tính góc hay cạnh vậy cậu?

1 tháng 10 2023

 

 

17 tháng 2 2018

giải tam giác ABC  vuông cân tại A là sao

28 tháng 3 2019

BC2=170

3:

góc C=90-50=40 độ

Xét ΔABC vuông tại A có sin C=AB/BC

=>4/BC=sin40

=>\(BC\simeq6,22\left(cm\right)\)

\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)

1:

góc C=90-60=30 độ

Xét ΔABC vuông tại A có

sin B=AC/BC

=>3/BC=sin60

=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)

=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)

17 tháng 8 2023

còn câu 2 

 

a: Xét ΔABC có BC^2=AB^2+AC^2

nên ΔABC vuông tại A

Xét ΔABD vuông tại D và ΔCAD vuông tại  D có

góc DBA=góc DAC

=>ΔABD đồng dạng với ΔCAD

b: góc EAF+góc EDF=180 độ

=>AFDE nội tiếp

=>góc AFD+góc AED=180 độ

=>góc AFD=góc CED