Cho phương trình \(ax^2+bx+c=0\) có 2 nghiệm \(x_1,x_2\) ; \(0\le x_1,x_2\le1\) . Tìm GTNN P \(\frac{\left(a-b\right)\left(2a-c\right)}{a\left(a-b+c\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Áp dụng hệ thức Vi-ét ta có:
y1+y2= 3x1+3x2=3(x1+x2)
=\(\dfrac{-3b}{a}\)
y1y2=\(\dfrac{9c}{a}\)
Ta có pt x^2 +\(\dfrac{3b}{a}x+\dfrac{9c}{a}=0\)

Áp dụng định lí viet: \(x_1+x_2=-\frac{b}{a},x_1.x_2=\frac{c}{a}\)
\(ax^2+bx+c=a\left(x^2+\frac{b}{a}x+\frac{c}{a}\right)=a\left(x^2-\left(x_1+x_2\right)x+x_1.x_2\right)=a\left[\left(x^2-x_1.x\right)-\left(x_2x-x_1x_2\right)\right]\)
=\(a\left[x\left(x-x_1\right)-x_2\left(x-x_1\right)\right]=a\left(x-x_1\right)\left(x-x_2\right)\)

Mình chưa học cách chứng minh mệnh đề nhưng mk chứng minh được hệ thức Vi-et:
\(ax^2+bx+c=0\)
\(\Delta=b^2-4ac\)
để phương trình có 2 nghiệm thì \(\Delta\ge0\)
\(\Rightarrow b^2-4ac\ge0\)
phương trình có 2 nghiệm là
\(x_1=\frac{-b+\sqrt{\Delta}}{2a}\)
\(x_2=\frac{-b-\sqrt{\Delta}}{2a}\)
Ta có
\(x_1+x_2=\frac{-b+\sqrt{\Delta}}{2a}+\frac{-b-\sqrt{\Delta}}{2a}\)
\(=\frac{-2b}{2a}=-\frac{b}{a}\)
\(x_1.x_2=\frac{-b+\sqrt{\Delta}}{2a}.\frac{-b-\sqrt{\Delta}}{2a}\)
\(=\frac{\left(-b+\sqrt{\Delta}\right).\left(-b-\sqrt{\Delta}\right)}{2a.2a}\)
\(=\frac{b^2-\Delta}{4a^2}\)
\(=\frac{b^2-\left(b^2-4ac\right)}{4a^2}\)
\(=\frac{4ac}{4a^2}=\frac{c}{a}\)

`a) 7x^2 - 2x + 3 = 0`
`(a = 7; b = -2; c = 3)`
`Δ = b^2 - 4ac = (-2)^2 - 4.7.3 = -80 < 0`
`=>` phương trình vô nghiệm
`b) 6x^2 + x + 5 = 0`
`(a = 6;b = 1;c = 5)`
`Δ = b^2 - 4ac = 1^2 - 4.6.5 = -119 < 0`
`=>` phương trình vô nghiệm
`c) 6x^2 + x - 5 = 0`
`(a = 6;b=1;c=-5)`
`Δ = b^2 - 4ac = 1^2 - 4.6.(-5) = 121 > 0`
`=>` phương trình có 2 nghiệm phân biệt
`x_1 = (-b + sqrt{Δ})/(2a) = (-1+ sqrt{121})/(2.6) = (-1+11)/12 = 10/12 = 5/6`
`x_2 = (-b - sqrt{Δ})/(2a) = (-1- sqrt{121})/(2.6) = (-1-11)/12 = -12/12 = -1`
Vậy phương trình có 1 nghiệm `x_1 = 5/6; x_2 = -1`

Theo Vi et ta có: \(\hept{\begin{cases}x_1+x_2=\frac{-b}{a}\\x_1x_2=\frac{c}{a}\end{cases}}\)
Theo giả thuyết thì:
\(x_1^2+x_2^2=2x_1x_2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=0\)
\(\Leftrightarrow\frac{b^2}{a^2}-\frac{4c}{a}=0\)
\(\Leftrightarrow b^2-4ac=0\)
Vậy ta có ĐPCM

Nhận xét rằng với mọi số nguyên \(x\), định lý Fermat nhỏ cho ta: \(x^{2017}\equiv x\) (mod \(2017\))
nên với mỗi nghiệm \(x_i\) ta có: \(x_i^{2017}+ax_i^2+bx_i+c\equiv ax_i^2+\left(b+1\right)x_i+c\) (mod \(2017\))
\(\Rightarrow ax_i^2+\left(b+1\right)x_i+c\equiv0\) (mod \(2017\))
Xét \(x_1\) có: \(ax_1^2+\left(b+1\right)x_1+c\equiv0\) (mod \(2017\)) (1)
Xét \(x_2\) có: \(ax_2^2+\left(b+1\right)x_2+c\equiv0\) (mod \(2017\)) (2)
Từ (1), (2) \(\Rightarrow a\left(x_1^2-x_2^2\right)+\left(b+1\right)\left(x_1-x_2\right)⋮2017\)
\(\Rightarrow a\left(x_1-x_2\right)\left(x_1+x_2\right)+\left(b+1\right)\left(x_1-x_2\right)⋮2017\)
\(\Rightarrow\left(x_1-x_2\right)\left[a\left(x_1+x_2\right)+\left(b+1\right)\right]⋮2017\)
Mà \(\left(x_1-x_2\right)\left(x_2-x_3\right)\left(x_3-x_1\right)⋮̸2017\), \(\Rightarrow\left\{{}\begin{matrix}x_1-x_2⋮̸2017\\x_2-x_3⋮̸2017\\x_1-x_3⋮̸2017\end{matrix}\right.\)
\(\Rightarrow a\left(x_1+x_2\right)+\left(b+1\right)⋮2017\) (3) (do \(2017\) là số nguyên tố)
Tương tự với \(x_1\) và \(x_3\): \(\Rightarrow a\left(x_1+x_3\right)+\left(b+1\right)⋮2017\) (4)
Từ (3), (4) \(\Rightarrow a\left(x_2-x_3\right)⋮2017\)
Mà \(x_2-x_3⋮̸2017\Rightarrow a⋮2017\) (do \(2017\) là số nguyên tố) (5)
Từ (3), (5) \(\Rightarrow b+1⋮2017\) (6)
Từ (1), (5), (6) \(\Rightarrow c⋮2017\) (7)
Từ (5), (6), (7) \(\Rightarrow a+b+c+1⋮2017\) (đpcm)

????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
\(x_{1} + x_{2} = - \frac{b}{a} , x_{1} x_{2} = \frac{c}{a} .\)
Điều kiện:
\(0 \leq x_{1} , x_{2} \leq 1.\)
Ta rút gọn:
\(P = \frac{\left(\right. a - b \left.\right) \left(\right. 2 a - c \left.\right)}{a \left(\right. a - b + c \left.\right)} .\)
Thay \(b = - a \left(\right. x_{1} + x_{2} \left.\right) , \textrm{ } c = a x_{1} x_{2}\):
\(P = \frac{\left(\right. a + a \left(\right. x_{1} + x_{2} \left.\right) \left.\right) \left(\right. 2 a - a x_{1} x_{2} \left.\right)}{a \left(\right. a + a \left(\right. x_{1} + x_{2} \left.\right) + a x_{1} x_{2} \left.\right)} .\)
Rút gọn \(a\):
\(P = \frac{\left(\right. 1 + x_{1} + x_{2} \left.\right) \left(\right. 2 - x_{1} x_{2} \left.\right)}{2 + x_{1} + x_{2} + x_{1} x_{2}} .\)
\(P \left(\right. x_{1} , x_{2} \left.\right) = \frac{\left(\right. 1 + x_{1} + x_{2} \left.\right) \left(\right. 2 - x_{1} x_{2} \left.\right)}{2 + x_{1} + x_{2} + x_{1} x_{2}} , 0 \leq x_{1} , x_{2} \leq 1.\)
\(P = \frac{\left(\right. 1 + x_{2} \left.\right) \left(\right. 2 - 0 \left.\right)}{2 + x_{2} + 0} = \frac{2 \left(\right. 1 + x_{2} \left.\right)}{2 + x_{2}} .\)
Với \(x_{2} \in \left[\right. 0 , 1 \left]\right.\):
⇒ Trên cạnh này: \(1 \leq P \leq \frac{4}{3}\).
\(P = \frac{\left(\right. 2 + x_{2} \left.\right) \left(\right. 2 - x_{2} \left.\right)}{3 + x_{2}} .\)
Với \(x_{2} \in \left[\right. 0 , 1 \left]\right.\):
⇒ Trên cạnh này: \(\frac{3}{4} \leq P \leq \frac{4}{3} .\)
Giá trị nhỏ nhất của \(P\) là:
\(\boxed{\frac{3}{4}}\)