3/1x3+3/3x5 x3/5x7+........+3/97x99+3/99x101
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.




\(=\dfrac{3}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\)
\(=\dfrac{3}{2}\cdot\dfrac{98}{99}=\dfrac{1}{33}\cdot49=\dfrac{49}{33}\)

Đặt \(S=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{99.101}\)
\(\Rightarrow S=\frac{2}{2}.\left(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{99.100}\right)\)
\(\Rightarrow S=\frac{3}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{3}{99.101}\right)\)
\(\Rightarrow S=\frac{3}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(\Rightarrow S=\frac{3}{2}.\left(1-\frac{1}{101}\right)\)
\(\Rightarrow S=\frac{3}{2}.\frac{100}{101}\)
\(\Rightarrow S=\frac{150}{101}\)


`2/(1xx3)+2/(3xx5)+2/(5xx7)+...+2/(99xx101)` đề phải ntn chứ mà nhỉ
`=1/1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101`
`=1/1-1/101`
`=101/101-1/101`
`=100/101`
(Sửa phần 3 / 3 x 5 = 2 / 3 x 5)
\(\dfrac{2}{1\times3}+\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+...+\dfrac{2}{99\times101}\)
Ta có: \(=2\times\left(\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+\dfrac{1}{5\times7}+...+\dfrac{1}{99\times101}\right)\)
\(=2\times\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(=2\times\left(1-\dfrac{1}{101}\right)\)
\(=2\times\dfrac{100}{101}\)
\(=\dfrac{200}{101}\)

Lời giải:
$A=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{99-97}{97.99}$
$=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}$
$=1-\frac{1}{99}=\frac{98}{99}$

\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{99.101}\)
\(\Leftrightarrow A=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(\Leftrightarrow A=\frac{3}{2}\left(1-\frac{1}{101}\right)\)
\(\Leftrightarrow A=\frac{3}{2}.\frac{100}{101}\)
\(\Leftrightarrow A=\frac{150}{101}\)
A = \(\frac{3}{1\times3}\) + \(\frac{3}{3\times5}\) + ... + \(\frac{3}{97\times99}\) + \(\frac{3}{99\times101}\)
A = \(\frac32\) x (\(\frac{2}{1\times3}\) + \(\frac{2}{3\times5}\) + ... + \(\frac{3}{99\times101}\))
A = \(\frac32\) x (\(\frac11\) - \(\frac13\) + .. + \(\frac{1}{99}\) - \(\frac{1}{99}-\frac{1}{101}\))
A = \(\frac32\) x (\(\frac11\) - \(\frac{1}{101}\))
A = \(\frac32\) x \(\frac{100}{101}\)
A = \(\frac{150}{101}\)