K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 giờ trước (9:42)

bài 3:

a: \(C=5+5^2+5^3+\cdots+5^{20}\)

\(=5\left(1+5+5^2+\cdots+5^{19}\right)\) ⋮5

b: \(C=5+5^2+5^3+\cdots+5^{20}\)

\(=\left(5+5^2\right)+\left(5^3+5^4\right)+\cdots+\left(5^{19}+5^{20}\right)\)

\(=5\left(1+5\right)+5^3\left(1+5\right)+\cdots+5^{19}\left(1+5\right)\)

\(=6\left(5+5^3+\cdots+5^{19}\right)\) ⋮6

c: \(C=5+5^2+5^3+\cdots+5^{20}\)

\(=\left(5+5^2+5^3+5^4\right)+\left(5^5+5^6+5^7+5^8\right)+\cdots+\left(5^{17}+5^{18}+5^{19}+5^{20}\right)\)

\(=5\left(1+5+5^2+5^3\right)+5^5\left(1+5+5^2+5^3\right)+\cdots+5^{17}\left(1+5+5^2+5^3\right)\)

\(=\left(1+5+5^2+5^3\right)\left(5+5^5+\cdots+5^{17}\right)=156\cdot\left(5+5^5+\cdots+5^{17}\right)\)

\(=13\cdot12\cdot\left(5+5^5+\cdots+5^{17}\right)\) ⋮13

Bài 2:

a: \(B=3+3^2+3^3+\cdots+3^{120}\)

\(=3\left(1+3+3^2+3^3+\cdots+3^{119}\right)\) ⋮3

b: \(B=3+3^2+3^3+\cdots+3^{120}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+\cdots+\left(3^{119}+3^{120}\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+\cdots+3^{119}\left(1+3\right)\)

\(=4\left(3+3^3+\cdots+3^{119}\right)\) ⋮4

c: \(B=3+3^2+3^3+\cdots+3^{120}\)

\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+\cdots+\left(3^{118}+3^{119}+3^{120}\right)\)

\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+\cdots+3^{118}\left(1+3+3^2\right)\)

\(=13\left(3+3^4+\cdots+3^{118}\right)\) ⋮13

Bài 1:

a: \(A=2+2^2+2^3+\ldots+2^{20}\)

\(=2\left(1+2+2^2+\cdots+2^{19}\right)\) ⋮2

b: \(A=2+2^2+2^3+\ldots+2^{20}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+\cdots+\left(2^{19}+2^{20}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+\cdots+2^{19}\left(1+2\right)\)

\(=3\left(2+2^3+\cdots+2^{19}\right)\) ⋮3

c: \(A=2+2^2+2^3+\ldots+2^{20}\)

\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+\cdots+\left(2^{17}+2^{18}+2^{19}+2^{20}\right)\)

\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+\cdots+2^{17}\left(1+2+2^2+2^3\right)\)

\(=15\left(2+2^5+\ldots+2^{17}\right)=5\cdot3\cdot\left(2+2^5+\cdots+2^{17}\right)\) ⋮5

10 giờ trước (9:36)

Bài 1:

a; A = 2 + \(2^2\) + 2\(^3\) + ... + 2\(^{20}\)

A = 2 x (1+ 2+ 2\(^2\) + ... + 2\(^{19}\))

A ⋮ 2(đpcm)

b; A = 2 + \(2^2\) + 2\(^3\) + ... + 2\(^{20}\)

Xét dãy số: 1; 2;...; 20 đây là dãy số cách đều với khoảng cách là:

2 - 1 = 1

Số số hạng của dãy số trên là:

(20 - 1) : 1+ 1 = 20(số)

Vì 20 : 2 = 10

Vậy nhóm hai số hạng liên tiếp của A vào nhau khi đó ta có:

A = (2+ 2\(^2\)) + (2\(^3\) + 2\(^4\)) + ... + (2\(^{19}+\) 2\(^{20}\))

A = 2.(1 + 2) + 2\(^3\).(1+ 2) + ... + 2\(^{19}\) .(1 + 2)

A = 2.3 + 2\(^3\).3 + ... + 2\(^{19}\).3

A = 3.(2+ 2\(^3\) + ... + 2\(^{19}\))

A ⋮ 3 (đpcm)

c; A = 2 + \(2^2\) + 2\(^3\) + ... + 2\(^{20}\)

Xét dãy số: 1; 2; 3;...; 20

Dãy số trên có 20 số hạng:

Vì 20 : 4 = 5

Vậy nhóm 4 hạng tử của A thành một nhóm khi đó:

A = (2+ 2\(^2\) + 2\(^3\) + 2\(^4\)) + ... + (2\(^{17}+2^{18}+2^{19}+2^{20}\))

A = 2.(1 + 2 + 2\(^2\) + 2\(^3\)) + ... + 2\(^{17}\).(1 + 2 + 2\(^2\) + 2\(^3\))

A = (1+ 2 +2\(^2\) + 2\(^3\)).(2+ ...+ 2\(^{17}\))

A = (1 + 2 + 4 + 8).(2+ ...+ 2\(^{17}\))

A = (3+ 4 + 8).(2+ ...+ 2\(^{17}\))

A = (7 + 8)(2+ ...+ 2\(^{17}\))

A = 15.(2+ ...+ 2\(^{17}\))

A ⋮ 5(đpcm)


Bài 4: 

\(x=130^0\)

4 tháng 12 2021

cụ thể hơn đc ko ạ

Câu 3: 

a: \(BD=\sqrt{BC^2-DC^2}=4\left(cm\right)\)

b: \(\widehat{A}=180^0-2\cdot70^0=40^0< \widehat{B}\)

nên BC<AC=AB

c: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có

BC chung

\(\widehat{EBC}=\widehat{DCB}\)

Do đó:ΔEBC=ΔDCB

d: Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)

nên ΔOBC cân tại O

31 tháng 10 2023

Câu 2

a) Thay y = -2 vào biểu thức đã cho ta được:

2.(-2) + 3 = -1

Vậy giá trị của biểu thức đã cho tại y = -2 là -1

b) Thay x = -5 vào biểu thức đã cho ta được:

2.[(-5)² - 5] = 2.(25 - 5) = 2.20 = 40

Vậy giá trị của biểu thức đã cho tại x = -5 là 40

5 tháng 7 2021

1 are

2 am

3 is

4 are

5 are

6 are

7 is

8 is

9 is

10 are

IV

1 is writing

2 are losing

3 is having

4 is staying

5 am not lying

6 is always using

7 are having

8 Are you playing

9 are not touching

10 Is - listening

11 Is- winning

12 am not staying

13 is not working

14 is not reading

15 isn't raining

16 am not listening

17 Are they making

18 Are you doing

19 Is - sitting

20 is - doing

21 are-putting

22 are-wearing

23 is-studying

5 tháng 7 2021

2, am

3, is

4,are

5,are

6,are

7,is

8,is

9,is

10,are

IV

1,2,7 OK

3,is having

4,has stayed

5,am not lying

6,always uses

8,Are-playing

9,not to touch

10,Is-listening

11,Are-winning

12,am not staying

13,isn't working

14,isn't reading

15,isn't raining

16,am not listening

17,Are-making

18,Are-doing

19,Is-sitting

20,is-doing

21,do-putting

22,do-wear

23,is-studying

14 tháng 5 2022

My grandma often works in the garden in her free time.

What are you doing with the stove?

14 tháng 5 2022

3. My grandma often works in the garden in her free time.

4. What are you doing with the stove?

A B C H D

1/ Xét \(\Delta ABC\) và \(\Delta HAC\) có:

∠A = ∠AHC = 90 độ

∠C là góc chung

Do đó: △ABC ∼ △HAC (g . g)

2/ Ta có: \(\Delta HAC\sim\Delta ABC\)

\(\Rightarrow\dfrac{AC}{HC}=\dfrac{BC}{AC}\)

\(\Rightarrow AC.AC=HC.BC\)

\(\Rightarrow AC^2=HC.BC\) (đpcm)

3/ Đặt BD là x, theo tính chất đường phân giác, ta có:

\(\dfrac{AB}{AC}=\dfrac{BD}{DC}\Rightarrow\dfrac{9}{12}=\dfrac{x}{15-x}\)

\(\Rightarrow9\left(15-x\right)=12x\)

\(\Rightarrow135-9x=12x\)

\(\Rightarrow135=12x+9x\)

\(\Rightarrow135=21x\)

\(\Rightarrow x\approx6,4\)

Độ dài của DC là: \(15-x\Rightarrow15-6,4=8,6\)

Vậy BD = 6,4 cm và DC = 8,6 cm

Câu 4: 

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC

AH chung

Do đó: ΔABH=ΔACH

b: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

\(\widehat{DAH}=\widehat{EAH}\)

Do đó: ΔADH=ΔAEH

Suy ra:HD=HE

23 tháng 11 2021

A nha

23 tháng 11 2021

Câu nào mới được ạ