K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Khi \(o_3=55^{\circ}\)

    • Khi hai đường thẳng cắt nhau tại điểm \(O\), ta có bốn góc: \(o_1,o_2,o_3,o_4\).
    • Các góc đối diện với nhau là bằng nhau, tức là:
      • \(o_1=o_3\)
      • \(o_2=o_4\)
    • Từ \(o_3=55^{\circ}\), ta có:
      • \(o_1=55^{\circ}\)
    • Tổng các góc xung quanh điểm \(O\) là \(36 0^{\circ}\): \(o_1+o_2+o_3+o_4=360^{\circ}\)
    • Thay giá trị của \(o_1\) và \(o_3\): \(55^{\circ}+o_2+55^{\circ}+o_4=360^{\circ}\) \(110^{\circ}+o_2+o_4=360^{\circ}\) \(o_2+o_4=250^{\circ}\)
    • Vì \(o_2=o_4\), ta có: \(2o_2=250^{\circ}\textrm{ }\Longrightarrow\textrm{ o}_2=125^{\circ}\) \(o_4=125^{\circ}\)
  • Kết quả:
    • \(o_1=55^{\circ}\)
    • \(o_2=125^{\circ}\)
    • \(o_3=55^{\circ}\)
    • \(o_4=125^{\circ}\)

b) Khi \(o_1+o_3=150^{\circ}\)

    • Từ \(o_1+o_3=150^{\circ}\) và biết rằng \(o_1=o_3\): \(o_1+o_1=150^{\circ}\textrm{ }\Longrightarrow\textrm{ }2o_1=150^{\circ}\textrm{ }\Longrightarrow\textrm{ o}_1=75^{\circ}\) \(o_3=75^{\circ}\)
    • Từ đó, ta có: \(o_2=180^{\circ}-75^{\circ}=105^{\circ}\) \(o_4=105^{\circ}\)
      • \(o_2=180^{\circ}-o_1\) (góc phụ)
      • \(o_4=o_2\) (góc đối diện)
  • Kết quả:
    • \(o_1=75^{\circ}\)
    • \(o_2=105^{\circ}\)
    • \(o_3=75^{\circ}\)
    • \(_{O4}=105^{\circ}\)

Tóm tắt kết quả:

  • a) \(o_1=55^{\circ},o_2=125^{\circ},o_3=55^{\circ},o_4=125^{\circ}\)
  • b) \(o_1=75^{\circ},o_2=105^{\circ},o_3=75^{\circ},o_4=105^{\circ}\)
  • THAM KHẢO
13 giờ trước (9:22)

Giải:

\(\hat{o_1}\) = \(\hat{O_3}\) = \(55^0\) (hai góc đối đỉnh)

\(\hat{O4}\) + \(\hat{O3}\) = 180\(^0\) (hai góc kề bù)

\(\hat{O_4}\) = 180\(^0\) - \(\hat{O_3}\)

\(\hat{O}_4\) = 180\(^0\) - 55\(^0\) = 125\(^0\)

\(\hat{O_4}\) = \(\hat{O_2}\) = 125\(^0\) (hai góc đối đỉnh)


19 tháng 6 2021

A O C D B

TH1: \(\widehat{AOC}+\widehat{AOD}+\widehat{BOD}=230o\)

Mà \(\widehat{AOC}=\widehat{BOD}\) (2 góc đối đỉnh)

=> \(2.\widehat{AOC}+\widehat{AOD}=230o\)

Mà \(\widehat{AOC}+\widehat{AOD}=180o\) (2 góc kề bù)

=> \(\left\{{}\begin{matrix}\widehat{AOC}=\widehat{BOD}=50o\\\widehat{AOD}=\widehat{BOC}=130o\end{matrix}\right.\)

TH2: \(\widehat{AOD}+\widehat{BOD}+\widehat{BOC}=230o\)

Mà \(\widehat{AOD}=\widehat{BOC}\) (2 góc đối đỉnh)

=> \(2.\widehat{AOD}+\widehat{BOD}=230o\)

Mà \(\widehat{AOD}+\widehat{BOD}=180o\)

=> \(\left\{{}\begin{matrix}\widehat{AOD}=\widehat{BOC}=50o\\\widehat{BOD}=\widehat{AOC}=130o\end{matrix}\right.\)

vô lí do \(\widehat{AOC}>\widehat{BOC}\)

Số đo các góc còn lại lần lượt là \(120^0;120^0;60^0\)

Số đo của bốn góc là \(110^0;110^0;70^0;70^0\)

20 tháng 7 2022

làm thế nào vậy bạn

16 tháng 9 2020

                                                              Bài giải

A B C D O

Bạn ơi hai góc AOC và góc BOD là 2 góc đối đỉnh thì bằng nhau mà sao đề lại cho góc AOC = 2 góc BOD

Tổng số đo của bốn góc là 360 độ

16 tháng 1 2019

Ta có: A O C ^ = B O D ^  (hai góc đối đỉnh) mà  A O C ^ + B O D ^ = 100 °  nên A O C ^ = B O D ^ = 100 ° : 2 = 50 ° .

Hai góc AOCBOC kề bù nên B O C ^ = 180 ° − 50 ° = 130 ° .

Do đó A O D ^ = B O C ^ = 130 °  (hai góc đối đỉnh).