K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1),(2) suy ra OA là đường trung trực của BC

=>OA⊥BC tại H và H là trung điểm của BC

b: Xét (O) có

ΔBCD nội tiếp

BD là đường kính

Do đó: ΔBCD vuông tại C

=>CB⊥CD

mà OA⊥BC

nên OA//CD

c: Ta có: \(\hat{FBA}+\hat{OBF}=\hat{OBA}=90^0\)

\(\hat{HBF}+\hat{OFB}=90^0\) (ΔBHF vuông tại H)

\(\hat{OBF}=\hat{OFB}\) (ΔOBF cân tại O)

nên \(\hat{FBA}=\hat{HBF}\)

=>BF là phân giác của góc HBA

Xét (O) có

ΔBFE nội tiếp

FE là đường kính

Do đó: ΔBFE vuông tại B

=>BF⊥BE

=>BE là phân giác ngoài tại đỉnh B của ΔHBA

Xét ΔHBA có BF là phân giác của góc HBA

nên \(\frac{FH}{FA}=\frac{BH}{BA}\left(3\right)\)

Xét ΔHBA có BE là phân giác ngoài tại đỉnh B

nên \(\frac{EH}{EA}=\frac{BH}{BA}\left(4\right)\)

Từ (3),(4) suy ra \(\frac{FH}{FA}=\frac{EH}{EA}\)

=>\(FH\cdot EA=FA\cdot EH\)

a: Xét tứ giác ABOC có 

\(\widehat{ABO}+\widehat{ACO}=180^0\)

Do đó: ABOC là tứ giác nội tiếp

c: Xét (O) có 

ΔBED nội tiếp

BD là đường kính

Do đó: ΔBED vuông tại E

Xét ΔBAD vuông tại B có BE là đường cao

nên \(AE\cdot AD=AB^2\left(1\right)\)

Xét ΔOBA vuông tại B có BH là đường cao

nên \(AH\cdot AO=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AD=AH\cdot AO\)

hay \(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)

Xét ΔAEH và ΔAOD có 

\(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)

\(\widehat{HAE}\) chung

Do đó: ΔAEH\(\sim\)ΔAOD

Suy ra: \(\widehat{AHE}=\widehat{ADO}=\widehat{BDE}\)

11 tháng 8 2017

a) A, B, C, D                 

b) G, H                

c) I, F

d) AB, CD

e) BE

10 tháng 4 2018

a) A, B, C, D         

b) G, H                

c) I, F

d) AB, CD

e) BE.

30 tháng 10 2018

a) A,M, B.

b) N, E.

c) Q, P.

d) MA, MB.

e) AB

28 tháng 12 2021

Chọn B

28 tháng 12 2021

b

28 tháng 6 2017

a) M, BN, C, D              

b) B, K                

c) A, I, G

d)  CN

e) MN

17 tháng 9 2019

a) M, BN, C, D

b) B, K                

c) A, I, G

d)  CN

e) MN.

1 tháng 7 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

OA =  2  < 2 nên điểm O và A nằm trong (A; 2)

AB = 2 nên điểm B nằm trên (A; 2)

AD = 2 nên điểm D nằm trên (A; 2)

AC = 2 2  > 2 nên điểm C nằm ngoài (A; 2)