K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ta có: BC=BH+CH

=>BC=3,6+6,4=10(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(HA^2=HB\cdot HC=3,6\cdot6,4=23,04=4,8^2\)

=>HA=4,8(cm)

ΔHAC vuông tại H

=>\(HA^2+HC^2=AC^2\)

=>\(AC^2=4,8^2+6,4^2=64=8^2\)

=>AC=8(cm)

Xét ΔABC vuông tại A có \(\sin B=\frac{AC}{BC}=\frac{8}{10}=\frac45\)

nên \(\hat{B}\) ≃53 độ

ΔABC vuông tại A

=>\(\hat{ABC}+\hat{ACB}=90^0\)

=>\(\hat{ACB}=90^0-53^0=37^0\)

b: Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1),(2) suy ra \(AM\cdot AB=AN\cdot AC\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(HB\cdot HC=AH^2\) (4)

Xét tứ giác AMHN có \(\hat{AMH}=\hat{ANH}=\hat{MAN}=90^0\)

nên AMHN là hình chữ nhật

=>\(HA^2=HM^2+HN^2\) (3)

Xét ΔHAB vuông tại H có HM là đường cao

nên \(HM^2=MA\cdot MB\) (5)

Xét ΔHAC vuông tại H có HN là đường cao

nên \(HN^2=NA\cdot NC\left(6\right)\)

Từ (3),(4),(5),(6) suy ra \(HB\cdot HC=MA\cdot MB+NA\cdot NC\)

c: Ta có: AK⊥MN

=>\(\hat{KAC}+\hat{ANM}=90^0\)

\(\hat{ANM}=\hat{AHM}\) (AMHN là hình chữ nhật)

\(\hat{AHM}=\hat{B}\left(=90^0-\hat{HAB}\right)\)

nên \(\hat{KAC}+\hat{B}=90^0\)

\(\hat{KCA}+\hat{B}=90^0\)

nên \(\hat{KAC}=\hat{KCA}\)

=>KA=KC

Ta có: \(\hat{KAC}+\hat{KAB}=\hat{BAC}=90^0\)

\(\hat{KCA}+\hat{KBA}=90^0\) (ΔABC vuông tại A)

\(\hat{KAC}=\hat{KCA}\)

nên \(\hat{KAB}=\hat{KBA}\)

=>KA=KB

mà KA=KC

nên KB=KC

=>K là trung điểm của BC

a:

Xét ΔABC vuông tại A có \(cosABC=\frac{BA}{BC}\)

=>\(\frac{6}{BC}=\frac35\)

=>\(BC=6\cdot\frac53=10\left(\operatorname{cm}\right)\)

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=10^2-6^2=100-36=64=8^2\)

=>AC=8(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2\)

=>\(BH=\frac{6^2}{10}=3,6\left(\operatorname{cm}\right)\)

b: Xét ΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1),(2) suy ra \(AD\cdot AB=AE\cdot AC\)

c: ΔABC vuông tại A

mà AI là đường trung tuyến

nên IA=IC

=>ΔIAC cân tại I

=>\(\hat{IAC}=\hat{ICA}\)

AEHD là hình chữ nhật

=>\(\hat{AED}=\hat{AHD}\)

\(\hat{AHD}=\hat{ABC}\left(=90^0-\hat{HAB}\right)\)

nên \(\hat{AED}=\hat{ABC}\)

\(\hat{IAC}+\hat{AED}=\hat{ICA}+\hat{ABC}=90^0\)

=>AI⊥ED tại K

18 tháng 9 2021

Bài 1:

Theo đề ta có : A1=G1; T1=3A1; X1 = 2T1

=>\(\left\{{}\begin{matrix}X_1=6A_1\\T_1=3A_1\\G_1=A_1\end{matrix}\right.\)=>\(\left\{{}\begin{matrix}A=4A_1\\G=7A_1\end{matrix}\right.\)

Lại có: 2A + 3G= 5800

=> 29A1 = 5800 => A1=200

=> G = 1400

14 tháng 8 2016

Bài nào vậy, chụp hình đi

c: Xét ΔANB có

EM//NB

E là trung điểm của AB

=>M là trung điểm của AN

=>AM=MN

Xét ΔDMC có

F là trung điểm của CD

FN//DM

=>N là trung điểm của CM

=>CN=NM=AM

AM+MO=AO

CN+NO=CO

mà AO=CO và AM=Cn

nên MO=NO

=>O là trung điểm của MN

=>M đối xứng N qua O

3 tháng 10 2021

\(c,\Rightarrow\left|x-\dfrac{1}{9}\right|=-\dfrac{4}{5}\\ \Rightarrow x\in\varnothing\left(\left|x-\dfrac{1}{9}\right|\ge0>-\dfrac{4}{5}\right)\\ d,\Rightarrow\left\{{}\begin{matrix}3x-2=0\\4y-7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=\dfrac{7}{4}\end{matrix}\right.\\ e,\Rightarrow\left\{{}\begin{matrix}2x+1=0\\x-y=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\x=y=-\dfrac{1}{2}\end{matrix}\right.\Rightarrow x=y=-\dfrac{1}{2}\)

15 tháng 3 2022

2KClO3 -> (t°, MnO2) 2KCl + 3O2

3O2 -> (UV) 2O3

O3 + 2Ag -> Ag2O + O2

4Na + O2 -> (t°) 2Na2O

Na2O + H2O -> 2NaOH

2NaOH + Cl2 -> NaCl + NaClO + H2O

2NaCl -> (đpnc) 2Na + Cl2

H2S + 4Cl2 + 4H2O -> H2SO4 + 8HCl

15 tháng 3 2022

\(2KClO_3\rightarrow\left(t^o,MnO_2\right)2KCl+3O_2\)

\(3O_2\rightarrow\left(tia.UV\right)2O_3\)

\(2Ag+O_3\rightarrow Ag_2O+O_2\)

\(4Na+O_2\rightarrow2Na_2O\)

\(Na_2O+H_2O\rightarrow2NaOH\)

\(NaOH+HCl\rightarrow NaCl+H_2O\)

\(2NaCl\rightarrow\left(đp\right)2Na+Cl_2\)

\(Cl_2+2H_2O+SO_2\rightarrow H_2SO_4+2HCl\)