kíu''
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



\(\dfrac{x+1}{99}+\dfrac{x+2}{98}+\dfrac{x+3}{97}+\dfrac{x+4}{96}=-4\)
⇔\(\dfrac{x+1}{99}+1+\dfrac{x+2}{98}+1+\dfrac{x+3}{97}+\dfrac{x+4}{96}=-4+1+1+1+1\)
⇔\(\dfrac{x+1}{99}+\dfrac{99}{99}+\dfrac{x+2}{98}+\dfrac{98}{98}+\dfrac{x+3}{97}+\dfrac{97}{97}+\dfrac{x+4}{96}+\dfrac{96}{96}=-4+4\)
⇔\(\dfrac{x+100}{99}+\dfrac{x+100}{98}+\dfrac{x+100}{97}+\dfrac{x+100}{96}=0\)
⇔\(\left(x+100\right)\left(\dfrac{1}{99}+\dfrac{1}{98}+\dfrac{1}{97}+\dfrac{1}{96}\right)=0\)
⇔\(x+100=0\left(\dfrac{1}{99}+\dfrac{1}{98}+\dfrac{1}{97}+\dfrac{1}{96}\ne0\right)\)
⇔\(x=-100\)
cíu được phần 1 thôi nhé
Bổ xung ý 2
\(\dfrac{1}{x}+\dfrac{y}{3}=\dfrac{5}{6}\\ \Rightarrow\dfrac{1}{x}=\dfrac{5}{6}-\dfrac{y}{3}\\ \Rightarrow\dfrac{1}{x}=\dfrac{5-2y}{6}\\ \Rightarrow x\cdot\left(5-2y\right)=6\)
`=>x;5-2y in Ư(6)={+-1;+-3;+-2;+-6}`
mà `5-2y` là số lẻ
nên `5-2y in {+-1;+-3}`
Ta có bảng sau :
`5-2y` | `-1` | `-3` | `1` | `3` |
`y` | `3(T//m)` | `4(T//m)` | `2(T//m)` | `1(T//m)` |
`x` | `-1(L)` | `-3(L)` | `1(T//m)` | `3(T//m)` |
Vậy `x;y in {(1;2);(3;1)}`

A B C H D
a)Xét \(\Delta ABC\) vuông tại A có:
\(BC^2=AC^2+AB^2\)
\(BC^2=64+36\)
\(BC^2=100\)
BC=10cm
Xét \(\Delta ABC\) có: AD là phân giác của\(\widehat{BAC}\)
=> \(\dfrac{BD}{AB}=\dfrac{DC}{AC}=\dfrac{BD+DC}{AB+AC}=\dfrac{BC}{AB+AC}=\dfrac{10}{6+8}=\dfrac{5}{7}\)
=> \(\dfrac{BD}{AB}=\dfrac{5}{7}\Leftrightarrow\dfrac{BD}{6}=\dfrac{5}{7}\Rightarrow BD=\dfrac{5}{7}.6\approx4,3\) cm
b)
Xét \(\Delta HBA\) và \(\Delta ABC\) có:
\(\widehat{B}\) chung
\(\widehat{BHA}=\widehat{BAC}\left(=90^o\right)\)
=> \(\Delta HBA\sim\)\(\Delta ABC\) (g-g)
=> \(\dfrac{AH}{AC}=\dfrac{AB}{BC}\Leftrightarrow\dfrac{AH}{8}=\dfrac{6}{10}\Rightarrow AH=\dfrac{3}{5}.8=4,8cm\)
\(\dfrac{HB}{AB}=\dfrac{AB}{BC}\Leftrightarrow\dfrac{HB}{6}=\dfrac{6}{10}\Rightarrow HB=\dfrac{3}{5}.6=3,6cm\)
c) Có : \(\dfrac{HB}{AB}=\dfrac{AB}{BC}\) ( \(\Delta HBA\sim\)\(\Delta ABC\) )
=> \(AB^2=HB.BC\)

a,\(\dfrac{37}{12}-3=\dfrac{37}{12}-\dfrac{3}{1}=\dfrac{37}{12}-\dfrac{36}{12}=\dfrac{1}{12}\)
b,\(\dfrac{4}{5}x\dfrac{6}{7}=\dfrac{24}{35}\)
15237
+ 6542
----------
21779
b, 3444 l 28
64 l ------------
84 l 123
0

a: \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=9\end{matrix}\right.\)



Bài 8:
\(\left(2n+3\right)^2-\left(2n-1\right)^2\)
\(=\left(2n+3+2n-1\right)\left(2n+3-2n+1\right)\)
\(=4\cdot\left(4n+2\right)=4\cdot2\cdot\left(2n+1\right)=8\left(2n+1\right)\) ⋮8
Bai 7:
\(B=x^2+y^2=\left(x+y\right)^2-2xy\)
\(=15^2-2\cdot\left(-100\right)=225+200=425\)
Bài 6:
\(B=\left(3x-1\right)^2-\left(x+7\right)^2-2\left(2x-5\right)\left(2x+5\right)\)
\(=9x^2-6x+1-\left(x^2+14x+49\right)-2\left(4x^2-25\right)\)
\(=9x^2-6x+1-x^2-14x-49-8x^2+50\)
=-20x+2
Khi x=1/5 thì \(B=-20\cdot\frac15+2=-4+2=-2\)
Bài 3:
a: \(x^2-10x+25=\left(x-5\right)^2\)
b: \(4-4x^2+x^4=\left(2-x^2\right)^2\)
c: \(x^2-6xy+9y^2=\left(x-3y\right)^2\)
d: \(\left(2x+y^2\right)\left(2x-y^2\right)=4x^2-y^4\)