2xy + 2x + 3y =1 giúp e mới
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) Ta có: \(x^2-y^2-2x+2y\)
\(=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-2\right)\)
b) Ta có: \(2x+2y-x^2-xy\)
\(=2\left(x+y\right)-x\left(x+y\right)\)
\(=\left(x+y\right)\left(2-x\right)\)
c) Ta có: \(x^2-25+y^2+2xy\)
\(=\left(x+y\right)^2-25\)
\(=\left(x+y-5\right)\left(x+y+5\right)\)
d) Ta có: \(3x^2-6xy+3y^2-12z^2\)
\(=3\left(x^2-2xy+y^2-4z^2\right)\)
\(=3\left(x-y-2z\right)\left(x-y+2z\right)\)
e) Ta có: \(x^2+2xy+y^2-xz-yz\)
\(=\left(x+y\right)^2-z\left(x+y\right)\)
\(=\left(x+y\right)\left(x+y-z\right)\)
f) Ta có: \(x^2-2x-4y^2-4y\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)

`M+N`
`=2x^{2}-2xy-3y^{2}+1+x^{2}-2xy+3y^{2}+1`
`=(2x^{2}+x^{2})-(2xy+2xy)+(3y^{2}-3y^{2})+1+1`
`=3x^{2}-4xy+2`
`M-N`
`=2x^{2}-2xy-3y^{2}-(x^{2}-2xy+3y^{2}+1)`
`=2x^{2}-2xy-3y^{2}-x^{2}+2xy-3y^{2}-1`
`=(2x^{2}-x^{2})+(2xy-2xy)-(3y^{2}+3y^{2})+1-1`
`=x^{2}-6y^{2}

\(Q=23x^3y^3+17x^3y^3-50x^3y^3+(-2xy)^3\)
\(Q=23x^3y^3+17x^3y^3-50x^3y^3+(-8)x^3y^3\)
\(Q=(23+17-50-8)x^3y^3\)
\(Q=-18x^3y^3\)
---
\(|x-1|=1\)
\(TH1:\) \(x-1=1\)
⇒ \(x=1+1=2\)
\(TH2: x-1=-1\)
⇒ \(x=(-1)+1=0\)
---
Tính giá trị của \(Q\) tại \(|x-1|=1\) và \(y=\dfrac{-1}{2}\)
\(TH1: x=2; y=\dfrac{-1}{2}\)
\(Q=-18.2^3.(\dfrac{-1}{2})^3\)
\(Q=-18.8.(\dfrac{-1}{8})^3\)
\(Q=36\)
\(TH1: x=0; y=\dfrac{-1}{2}\)
\(Q=-18.0^3.(\dfrac{-1}{2})^3\)
\(Q=0\)
Vậy \(Q\) ∈ {\({36;0}\)}
Ta có: \(Q=23x^2y^3+17x^3y^3-50x^3y^3+\left(-2xy\right)^3\)
\(=-10x^3y^3-8x^3y^3\)
\(=-18x^3y^3\)
Ta có: |x-1|=1
\(\Leftrightarrow\left[{}\begin{matrix}x-1=1\\x-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)
Thay x=2 và y=-1/2 vào Q, ta được:
\(Q=-18\cdot2^3\cdot\left(-\dfrac{1}{2}\right)^3=-18\cdot8\cdot\dfrac{-1}{8}=18\)
Thay x=0 và y=-1/2 vào Q, ta được:
\(Q=-18\cdot0^3\cdot\left(-\dfrac{1}{2}\right)^3=0\)

\(a,-2xy^2\left(x^3y-2x^2y^2+5xy^3\right)\\ =-2x^4y^3+4x^3y^4-10x^2y^5\\ b,\left(-2x\right)\left(x^3-3x^2-x+1\right)\\ =-2x^4+6x^3+2x^2-2x\\ c,\left(-10x^3+\dfrac{2}{5}y-\dfrac{1}{3}z\right)\left(-\dfrac{1}{2}zy\right)\\ =5x^3yz-\dfrac{1}{5}y^2z+\dfrac{1}{6}yz^2\\ d,3x^2\left(2x^3-x+5\right)=6x^5-3x^3+15x^2\\ e,\left(4xy+3y-5x\right)x^2y=4x^3y^2+3x^2y^2-5x^3y\\ f,\left(3x^2y-6xy+9x\right)\left(-\dfrac{4}{3}xy\right)\\ =-4x^3y^2+8x^2y^2-12x^2y\)

2xy-2x3y=-9
(2x+3)y-2x-(-9)=0
(2x+3)y-2x+9=0
2x+3=0
2(y-1)=0
2y=2
y=1
mình cũng không rõ lắm í tại vì hè này mình mới lên lớp 6 mình cũng biết sơ sơ

1: x=3y=2z
=>x/6=y/2=z/3
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{6}=\dfrac{y}{2}=\dfrac{z}{3}=\dfrac{2x-3y+4z}{2\cdot6-3\cdot2+4\cdot3}=\dfrac{48}{18}=\dfrac{8}{3}\)
=>x=48/3=16; y=16/3; z=8
2: 2x=3y=4z
=>x/6=y/4=z/3
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{2x-3y+4z}{2\cdot6-3\cdot4+4\cdot3}=\dfrac{48}{12}=4\)
=>x=24; y=16; z=12
2xy+2x+3y=1
=>2x(y+1)+3y+3=4
=>2x(y+1)+3(y+1)=4
=>(2x+3)(y+1)=4
mà 2x+3 lẻ
nên (2x+3;y+1)∈{(1;4);(-1;-4)}
=>(2x;y)∈{(-2;3);(-4;-5)}
=>(x;y)∈{(-1;3);(-2;-5)}