K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8

https://chatgpt.com/c/689b025a-26b8-832f-a874-60244db0553f

12 tháng 8

bn vào chưa


21 tháng 11 2017

Từ PT (1) ta có: y = (a + 1)x – (a + 1) (*)

Thế vào PT (2) ta được:

x + (a – 1) [(a + 1)x – (a + 1)] = 2 ⇔ x + ( a 2 – 1 ) x – ( a 2 – 1 ) = 2 x + (a2 – 1)x – (a2 – 1) = 2

⇔ a 2 x = a 2 + 1   ( 3 )

Với a ≠ 0 , phương trình (3) có nghiệm duy nhất x = a 2 + 1 a 2 . Thay vào (*) ta có:

y = a + 1 a 2 + 1 a 2 − a + 1 = a + 1 a 2 + 1 − a 2 a + 1 a 2 = a 3 + a + a 2 + 1 − a 3 − a 2 a 2 = a + 1 a 2

Suy ra hệ phương trình đã cho có nghiệm duy nhất ( x ;   y ) = a 2 + 1 a 2 ; a + 1 a 2  

⇒ x + y = a 2 + 1 a 2 + a + 1 a 2 = a 2 + a + 2 a 2

Đáp án: A

4 tháng 11 2019

Từ PT (1) ta có: y = (a + 1)x – (a + 1) (*) thế vào PT (2) ta được:

x + ( a – 1 ) [ ( a + 1 ) x – ( a + 1 ) ] = 2   x + ( a 2 – 1 ) x – ( a 2 – 1 ) = 2

⇔ a 2 x = a 2 + 1   ( 3 )

Với a ≠ 0, phương trình (3) có nghiệm duy nhất x = a 2 + 1 a 2 . Thay vào (*) ta có:

y = ( a + 1 ) a 2 + 1 a 2 − ( a + 1 ) = a + 1 a 2 + 1 − a 2 a 2 + 1 a 2 = a 3 + a + a 2 + 1 − a 3 − a 2 a 2 = a + 1 a 2  

Suy ra hệ phương trình đã cho có nghiệm duy nhất ( x ;   y ) = a 2 + 1 a 2 ; a + 1 a 2

Hệ phương trình có nghiệm nguyên: x ∈ ℤ y ∈ ℤ ⇔ a 2 + 1 a 2 ∈ ℤ a + 1 a 2 ∈ ℤ ( a ∈ ℤ )  

Điều kiện cần: x = a 2 + 1 a 2 = 1 + 1 a 2 ∈ ℤ ⇔ 1 a 2 ∈ ℤ mà a 2 > 0   ⇒ a 2 = 1

⇔ a = ± 1 ( T M   a ≠ 0 )

Điều kiện đủ:

a = −1 ⇒  y = 0  (nhận)

a = 1 y = 2  (nhận) 

Vậy a = ± 1 hệ phương trình đã cho có nghiệm nguyên.

Đáp án: D

6 tháng 1 2018

abc=100a+10b+c=n2-1(*)

cba=100c+10b+a=n2-4n+4(**)

(*)-(**)=99(a-c)=4n+5

=> 4n-5 chia hết cho 99

Mà \(100\le abc\le999\)

=> \(100\le n^2-1\le999\)

<=> \(101\le n^2\le1000\)=\(11< 31\)=\(39\le4n-5\le199\)

Vì  4n+5 chia hết cho 99 

Nên 4n-5=99

4n=99+5

4n=104

n=104:4

n=26

Vậy abc=675

6 tháng 1 2018

bạn ơi giúp mk giải nốt bài 2 đc ko ? cảm ơn bạn rất rất nhìu

6 tháng 4 2017

a) Điều kiện x ≥ 1; y ≥ 1.

Đặt Giải bài 10 trang 133 SGK Toán 9 Tập 2 | Giải toán lớp 9 (u, v ≥ 0).

Hệ phương trình trở thành:

Giải bài 10 trang 133 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy hệ phương trình có nghiệm (2; 2).

b) Đặt ( x   –   1 ) 2   =   u , u ≥ 0.

Hệ phương trình trở thành:

Vậy hệ phương trình có hai nghiệm Giải bài 10 trang 133 SGK Toán 9 Tập 2 | Giải toán lớp 9

6 tháng 9 2019

Cách 1

Giải bài 17 trang 16 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy hệ phương trình có nghiệm duy nhất Giải bài 17 trang 16 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 17 trang 16 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy hệ phương trình có nghiệm duy nhất Giải bài 17 trang 16 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 17 trang 16 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy hệ phương trình có nghiệm duy nhất Giải bài 17 trang 16 SGK Toán 9 Tập 2 | Giải toán lớp 9

Cách 2

Giải bài 17 trang 16 SGK Toán 9 Tập 2 | Giải toán lớp 9 

Giải bài 17 trang 16 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 17 trang 16 SGK Toán 9 Tập 2 | Giải toán lớp 9 

Giải bài 17 trang 16 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 17 trang 16 SGK Toán 9 Tập 2 | Giải toán lớp 9 

Giải bài 17 trang 16 SGK Toán 9 Tập 2 | Giải toán lớp 9

Kiến thức áp dụng

Giải hệ phương trình  ta làm như sau:

Bước 1: Bước 1: Từ một phương trình (coi là phương trình thứ nhất), ta biểu diễn x theo y (hoặc y theo x) ta được phương trình (*). Sau đó, ta thế (*) vào phương trình thứ hai để được một phương trình mới ( chỉ còn một ẩn).

Bước 2: Dùng phương trình mới ấy thay thế cho phương trình thứ hai, phương trình (*) thay thế cho phương trình thứ nhất của hệ ta được hệ phương trình mới tương đương .

Bước 3: Giải hệ phương trình mới ta tìm được nghiệm của hệ phương trình.

7 tháng 2 2017

a) Điều kiện x ≥ 1; y ≥ 1.

Đặt Giải bài 10 trang 133 SGK Toán 9 Tập 2 | Giải toán lớp 9 (u, v ≥ 0).

Hệ phương trình trở thành:

Giải bài 10 trang 133 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy hệ phương trình có nghiệm (2; 2).

b) Đặt (x – 1)2 = u, u ≥ 0.

Hệ phương trình trở thành:

u − 2 y = 2 3 u + 3 y = 1 ⇔ 3 u − 6 y = 6 3 u + 3 y = 1 ⇔ − 9 y = 5 u − 2 y = 2 ⇔ y = − 5 9 u = 8 9 + u = 8 9 ⇒ ( x − 1 ) 2 = 8 9 ⇔ x − 1 = 2 2 3 x − 1 = − 2 2 3 ⇔ x = 2 2 + 3 3 x = − 2 2 + 3 3

Vậy hệ phương trình có hai nghiệm Giải bài 10 trang 133 SGK Toán 9 Tập 2 | Giải toán lớp 9

9 tháng 6 2017

Ta có

3 x − y = 2 m + 1 x + 2 y = − m + 2 ⇔ 6 x − 2 y = 4 m + 2 x + 2 y = − m + 2 ⇔ 7 x = 3 m + 4 x + 2 y = − m + 2 ⇔ x = 3 m + 4 7 3 m + 4 7 + 2 y = − m + 2 ⇔ x = 3 m + 4 7 2 y = − 7 m + 14 7 − 3 m + 4 7 ⇔ x = 3 m + 4 7 y = − 5 m + 5 7

hệ phương trình có nghiệm duy nhất ( x ;   y )   = 3 m + 4 7 ; − 5 m + 5 7  

Để x – y = 1 thì 3 m + 4 7 − − 5 m + 5 7 = 1 ⇔ 8m – 1 = 7 ⇔ 8m = 8  m = 1

Vậy với m = 1 thì hệ phương trình có nghiệm duy nhất (x; y) thỏa mãn x − y = 1

Đáp án: C

26 tháng 7 2017

Đáp án D

1:

\(\left\{{}\begin{matrix}\dfrac{2x+1}{x+1}+\dfrac{3y}{y-1}=1\\\dfrac{3x}{x+1}-\dfrac{4y}{y-1}=10\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2-\dfrac{1}{x+1}+3+\dfrac{3}{y-1}=1\\3-\dfrac{3}{x+1}-\dfrac{4y-4+4}{y-1}=10\end{matrix}\right.\)

=>-1/(x+1)+3/(y-1)=1-2-3=-5 và -3/(x+1)-4/(y-1)=10-3-4=3

=>x+1=13/11 và y-1=-13/18

=>x=2/11 và y=5/18