Bài 5: Tính tổng
S= \(1+\frac57+\frac{5}{7^2}+\frac{5}{7^3}+\ldots+\frac{5}{7^{55}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{3}{7}-\frac{3}{7}\right)+\left(\frac{5}{9}-\frac{5}{9}\right)+\left(\frac{2}{11}-\frac{2}{11}\right)+\left(\frac{7}{13}-\frac{7}{13}\right)+\frac{9}{16}\)
= 0 + \(\frac{9}{16}\)
= \(\frac{9}{16}\)
tick nha bn
\(B=\frac{1}{5}-\frac{3}{7}+\frac{5}{9}-\frac{2}{11}+\frac{7}{13}-\frac{9}{16}-\frac{7}{13}+\frac{2}{11}-\frac{5}{9}+\frac{3}{7}-\frac{1}{5}\)
\(=\left(\frac{1}{5}-\frac{1}{5}\right)+\left(-\frac{3}{7}+\frac{3}{7}\right)+\left(\frac{5}{9}-\frac{5}{9}\right)+\left(-\frac{2}{11}+\frac{2}{11}\right)+\left(\frac{7}{13}-\frac{7}{13}\right)-\frac{9}{16}\)
\(=0+0+0+0+0-\frac{9}{16}\)
\(=-\frac{9}{16}\)
^...^
^_^
Đăt A = \(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+......+\frac{1}{7^{100}}\)
\(\Rightarrow7A=1+\frac{1}{7}+\frac{1}{7^2}+.....+\frac{1}{7^{100}}\)
\(\Rightarrow7A-A=1-\frac{1}{7^{100}}\)
\(\Rightarrow6A=1-\frac{1}{7^{100}}\)
\(\Rightarrow A=\frac{1-\frac{1}{7^{100}}}{6}\)
\(B=\frac{1}{5}-\frac{3}{7}+\frac{5}{9}-\frac{2}{11}+\frac{7}{13}-\frac{9}{16}-\frac{7}{13}+\frac{2}{12}-\frac{5}{9}+\frac{3}{7}-\frac{1}{5}-\frac{1}{5}\)
\(B=\left(\frac{1}{5}-\frac{1}{5}\right)-\left(\frac{3}{7}-\frac{3}{7}\right)+\left(\frac{5}{9}-\frac{5}{9}\right)+\left(\frac{7}{13}-\frac{7}{13}\right)-\frac{2}{11}+\frac{2}{12}-\frac{9}{16}-\frac{1}{5}\)
\(B=0-0+0+0-\frac{2}{11}+\frac{2}{12}-\frac{9}{16}-\frac{1}{5}\)
\(B=\frac{-2}{11}+\frac{2}{12}-\frac{9}{16}-\frac{1}{5}\)
Đến đây chỉ còn cách quy đồng thôi
a)\(\frac{2}{3}+\frac{3}{4}+\frac{5}{6}\)
\(=\frac{8+9+10}{12}\)
\(=\frac{27}{12}=\frac{9}{4}\)
b)\(\frac{15}{8}-\frac{7}{12}+\frac{5}{6}\)
\(=\frac{45-14+20}{24}\)
\(=\frac{51}{24}=\frac{17}{8}\)
2)
a)\(\frac{2}{5}+\frac{7}{13}+\frac{3}{5}+\frac{1}{7}\)
\(=\frac{2}{5}+\frac{3}{5}+\frac{7}{13}+\frac{1}{7}\)
\(=1+\frac{7}{13}+\frac{1}{7}\)
\(=\frac{20}{13}+\frac{1}{7}\)
\(=\frac{153}{91}\)
Tí tớ trả lời tiếp
b)\(5\frac14+3\frac25-4\frac14\)
=\(\left(5\frac14-4\frac14\right)+3\frac25\)
=\(\left\lbrack\left(5-4\right)+\left(\frac14-\frac14\right)\right\rbrack+\frac{17}{5}\)
=\(1+0+\frac{17}{5}\)
=\(\frac55+\frac{17}{5}\)
=\(\frac{22}{5}\)
\(S=\frac{\sqrt{3}-1}{3-1}+\frac{\sqrt{5}-\sqrt{3}}{5-3}+\frac{\sqrt{7}-\sqrt{5}}{7-5}+...+\frac{\sqrt{2019^2}-\sqrt{2019^2-2}}{2019^2-\left(2019^2-2\right)}\)
\(S=\frac{\sqrt{3}-1}{2}+\frac{\sqrt{5}-\sqrt{3}}{2}+\frac{\sqrt{7}-\sqrt{5}}{2}+...+\frac{\sqrt{2019^2}-\sqrt{2019^2-2}}{2}\)
\(S=\frac{1}{2}\left(\sqrt{3}-1+\sqrt{5}-\sqrt{3}+\sqrt{7}-\sqrt{5}+...+\sqrt{2019^2}-\sqrt{2019^2-2}\right)\)
\(S=\frac{1}{2}\left(-1+\sqrt{2019^2}\right)\)
\(S=\frac{\left(2019-1\right)}{2}=1009\)
\(S=\frac{1-\sqrt{3}}{1-3}+\frac{\sqrt{3}-\sqrt{5}}{3-5}+\frac{\sqrt{5}-\sqrt{7}}{5-7}+...+\frac{2019-\sqrt{2019^2-2}}{2019^2-2019^2-2}.\)
\(S=\frac{1-\sqrt{3}}{-2}+\frac{\sqrt{3}-\sqrt{5}}{-2}+\frac{\sqrt{5}-\sqrt{7}}{-2}+...+\frac{2019-\sqrt{2019^2-2}}{-2}.\)
\(-2S=1-\sqrt{3}+\sqrt{3}-\sqrt{5}+\sqrt{5}...+2019-\sqrt{2019^2-2}\)
\(-2S=1-\sqrt{2019^2-2}\Rightarrow S=\frac{\sqrt{2019^2-2}-1}{2}\)
\(A=\frac{\frac{3}{7}-\frac{3}{17}+\frac{3}{37}}{\frac{5}{7}-\frac{5}{17}+\frac{5}{37}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}}{\frac{7}{5}-\frac{7}{4}+\frac{7}{3}-\frac{7}{2}}\)
\(=\frac{3\left(\frac{1}{7}-\frac{1}{17}-\frac{1}{37}\right)}{5\left(\frac{1}{7}-\frac{1}{17}-\frac{1}{37}\right)}+\frac{1.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}\right)}{-7\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}\right)}\)
\(=\frac{3}{5}+\frac{-1}{7}\)
\(=\frac{21}{35}-\frac{5}{35}\)
\(=\frac{16}{35}\)
\(A=\frac{3.\left(\frac{1}{7}-\frac{1}{17}-\frac{1}{37}\right)}{5.\left(\frac{1}{7}-\frac{1}{17}-\frac{1}{37}\right)}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}}{7.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}\right)}\)
\(A=\frac{3}{5}+\frac{1}{7}=\frac{21}{35}+\frac{5}{35}=\frac{26}{35}\)
Tổng thứ nhất là cấp số nhân có số hạng đầu là 1, công bội 57, có 56 số hạng.
Áp dụng công thức:
\(T = \frac{57^{56} - 1}{56}\)
Tổng thứ hai là cấp số nhân có số hạng đầu là \(\frac{5}{7}\), công bội \(\frac{1}{7}\), có 55 số hạng.
Áp dụng công thức:
\(T = \frac{5}{6} \left(\right. 1 - \frac{1}{7^{55}} \left.\right)\)
Kết luận:
\(S = \frac{57^{56} - 1}{56} + \frac{5}{6} \left(\right. 1 - \frac{1}{7^{55}} \left.\right)\)
Đề bài có sai ko v bn?