Cho P=3x=2/x-3. Tìm x để P là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: Để B nguyên thì \(-7⋮x+3\)
\(\Leftrightarrow x+3\in\left\{1;-1;7;-7\right\}\)
hay \(x\in\left\{-2;-4;4;-10\right\}\)
b: Để A là số nguyên thì \(3x+2⋮x-3\)
\(\Leftrightarrow x-3\in\left\{1;-1;11;-11\right\}\)
hay \(x\in\left\{-2;-4;14;-8\right\}\)
Để A và B cùng là số nguyên thì \(x\in\left\{-2;-4\right\}\)

ĐKXĐ: \(x\ne\pm3\)
a
Khi x = 1:
\(A=\dfrac{3.1+2}{1-3}=\dfrac{5}{-2}=-2,5\)
Khi x = 2:
\(A=\dfrac{3.2+2}{2-3}=-8\)
Khi x = \(\dfrac{5}{2}:\)
\(A=\dfrac{3.2,5+2}{2,5-3}=\dfrac{9,5}{-0,5}=-19\)
b
Để A nguyên => \(\dfrac{3x+2}{x-3}\) nguyên
\(\Leftrightarrow3x+2⋮\left(x-3\right)\\3\left(x-3\right)+11⋮\left(x-3\right) \)
Vì \(3\left(x-3\right)⋮\left(x-3\right)\) nên \(11⋮\left(x-3\right)\)
\(\Rightarrow\left(x-3\right)\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\\ \Rightarrow x\left\{4;2;-8;14\right\}\)
c
Để B nguyên => \(\dfrac{x^2+3x-7}{x+3}\) nguyên
\(\Rightarrow x\left(x+3\right)-7⋮\left(x+3\right)\)
\(\Rightarrow-7⋮\left(x+3\right)\\ \Rightarrow x+3\inƯ\left\{\pm1;\pm7\right\}\)
\(\Rightarrow x=\left\{-4;-11;-2;4\right\}\)
d
\(\left\{{}\begin{matrix}A.nguyên.\Leftrightarrow x=\left\{-8;2;4;14\right\}\\B.nguyên\Leftrightarrow x=\left\{-11;-4;-2;4\right\}\end{matrix}\right.\)
=> Để A, B cùng là số nguyên thì x = 4.

Ta có: \(B=x^3+3x^2+3x+9=x^2\left(x+3\right)+3\left(x+3\right)\)
\(\Rightarrow B=\left(x+3\right)\left(x^2+3\right)\)
Để B là số nguyên tố => phải có một số bằng 1
Vì \(x^2\ge0\Rightarrow x^2+3\ge3>1\)
\(\Rightarrow x+3=1\Rightarrow x=1-3=-2\)
Vậy x = -2
B = (x+3).(x^2+3)
Để B là số nguyên tố => x+3 = 1 hoặc x^2+3 = 1
=> x=-2
Khi đó : B = 1.(4+3) = 7 là số nguyên tố (tm)
Vậy x=-2
k mk nha

\(b,A=\frac{3x+2}{x-3}\)\(=\frac{x-3+2x-6+11}{x-3}\)\(=\frac{\left(x-3\right)+2\left(x-3\right)+11}{x-3}\)\(=\frac{x-3}{x-3}+\frac{2\left(x-3\right)}{x-3}+\frac{11}{x-3}\)\(=1+2+\frac{11}{x-3}\)\(=3+\frac{11}{x-3}\)
Để A nguyên => \(\frac{11}{x-3}\)nguyên => \(11⋮x-3\)\(\Rightarrow x-3\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Ta có bảng sau:
x-3 | -11 | -1 | 1 | 11 |
x | -8 | 2 | 4 | 14 |
Vậy................


Làm câu a,b thôi nha !
a)Tính A khi x=1;x=2;x=5/2
x=1
Thay x vào biểu thức A, ta có:
\(\frac{3.x+2}{1-3}=-\frac{5}{2}\)
x=2
Thay x vào biểu thức A ta có:
\(\frac{3.2+2}{2-3}=-\frac{8}{1}=-8\)
x=5/2
Thay x vào biểu thức A ta có:
\(\frac{3.0,4+2}{0,4-3}=\frac{3,2}{-2,6}=\frac{16}{13}\)
b)Tìm x thuộc Z để A là số nguyên:
\(A=\frac{3x+2}{x-3}\)
Để A là số nguyên thì:
=>\(3x+2⋮x-3\)
\(\Rightarrow3x-9+11⋮x-3\)
\(\Rightarrow3\left(x-3\right)+11⋮x-3\)
\(\Rightarrow11⋮x-3\)
\(\Rightarrow x-3\inƯ\left(11\right)=\left\{1;11\right\}\)
Xét trường hợp
\(\orbr{\begin{cases}x-3=1\\x-3=11\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1+3=4\\x=11+3=14\end{cases}}\)
Vậy A là số nguyên thì
\(x\inƯ\left(4;14\right)\)
Các bài còn lại làm tương tự !
Giải:
Để \(P = \frac{3 x - 2}{x - 3}\) là số nguyên thì \(\frac{3 x - 2}{x - 3}\) phải chia hết, tức là \(3 x - 2\) chia hết cho \(x - 3\).
Ta thử các giá trị nguyên của x khác 3:
Với x = 2: \(P = \frac{3 \times 2 - 2}{2 - 3} = \frac{6 - 2}{- 1} = \frac{4}{- 1} = - 4\) (là số nguyên)
Với x = 4: \(P = \frac{3 \times 4 - 2}{4 - 3} = \frac{12 - 2}{1} = \frac{10}{1} = 10\) (là số nguyên)
Với x = 10: \(P = \frac{3 \times 10 - 2}{10 - 3} = \frac{30 - 2}{7} = \frac{28}{7} = 4\) (là số nguyên)
Với x = -4: \(P = \frac{3 \times \left(\right. - 4 \left.\right) - 2}{- 4 - 3} = \frac{- 12 - 2}{- 7} = \frac{- 14}{- 7} = 2\) (là số nguyên)
Với x = 3: Mẫu số bằng 0 nên không được chọn.
Vậy các giá trị của x để P là số nguyên là: −4, 2, 4, 10.
Đáp số: \(-4;2;4;10\)