K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHB vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1),(2) suy ra \(AE\cdot AB=AF\cdot AC\)

=>\(\frac{AE}{AC}=\frac{AF}{AB}\)

Xét ΔAEF và ΔACB có

\(\frac{AE}{AC}=\frac{AF}{AB}\)

góc EAF chung

Do đó: ΔAEF~ΔACB

b: ΔAEF~ΔACB

=>\(\hat{AEF}=\hat{ACB}\)

\(\hat{AEF}=\hat{MEB}\) (hai góc đối đỉnh)

nên \(\hat{MEB}=\hat{MCF}\)

Xét ΔMEB và ΔMCF có

\(\hat{MEB}=\hat{MCF}\)

\(\hat{EMB}\) chung

Do đó: ΔMEB~ΔMCF

=>\(\frac{ME}{MC}=\frac{MB}{MF}\)

=>\(ME\cdot MF=MB\cdot MC\)

21 tháng 7

a) Chứng minh: ∠AFE = ∠ABC

Ta có: ΔAHE vuông tại E và ΔAHF vuông tại F

∠AEH = ∠AFH = 90°

∠EAH = ∠FAH (chung góc)

⇒ ΔAHE ~ ΔAHF (g.g)

⇒ ∠AHE = ∠AHF

Ta có: ∠AHE = ∠ABC (cùng phụ với ∠BAH)

∠AHF = ∠AFE (cùng phụ với ∠CAH)

⇒ ∠AFE = ∠ABC

b) Chứng minh: ME.MF = MB.MC

Ta có: ΔMEB ~ ΔMFC (g.g)

⇒ ME/MF = MB/MC

⇒ ME.MF = MB.MC

c) Tính độ dài đoạn vuông góc hạ từ A xuống EF

Ta có: ∠BAC = 60°, ∠ABC = 80°

⇒ ∠ACB = 40°

Ta có: ΔABC ~ ΔAEF (g.g)

⇒ AF/AC = AE/AB

Ta có: AH ⊥ BC, EF ⊥ AH

Gọi K là giao điểm của AH và EF

Ta có: AK ⊥ EF

Sử dụng công thức tính diện tích tam giác ABC:

S = (1/2).AB.AC.sin(∠BAC)

S = (1/2).AH.BC

Từ đó tính được AH

Sau đó, tính AK bằng cách sử dụng tỷ lệ giữa các cạnh của ΔAEF và ΔABC

Kết quả: AK ≈ 5,18 cm (sau khi tính toán và làm tròn)

5 tháng 5 2023

hộ e cái mọi người ơi

 

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

AH=3*4/5=2,4cm

 

9 tháng 5 2023

a. Xét ΔHBA và ΔABC có:

       \(\widehat{H}=\widehat{A}\) = 900 (gt)

        \(\widehat{B}\) chung

\(\Rightarrow\)  ΔHBA \(\sim\) ΔABC (g.g)

b. Vì  ΔABC vuông tại A

Theo đ/lí Py - ta - go ta có:

  BC2 = AB2 + AC2

  BC2 = 32 + 42

\(\Rightarrow\) BC2 = 25 cm

\(\Rightarrow\) BC = \(\sqrt{25}=5\) cm

Ta lại có:  ΔHBA \(\sim\) ΔABC

   \(\dfrac{AH}{CA}=\dfrac{BA}{BC}\) 

\(\Leftrightarrow\dfrac{AH}{4}=\dfrac{3}{5}\) 

\(\Rightarrow\) AH = 2,4 cm

8 tháng 5 2020

A B C H D

Ta có: AH vuông BC => ^AHB = 90 độ 

Xét trong đường tròn tâm O

^ACB chắn cung AD  và AD là đường kính => ^ACB = 90 độ 

Xét \(\Delta\)AHB và \(\Delta\)ACD có: ^AHB = ^ACB ( = 90 độ ) ; ^ABH = ^ADC ( cùng chắn cung AC ) 

=> \(\Delta\)AHB ~ \(\Delta\)ACD (g-g)

a) Xét ΔABD vuông tại D và ΔACE vuông tại E có 

\(\widehat{BAD}\) chung

Do đó: ΔABD\(\sim\)ΔACE(g-g)

Xét (O) có

ΔACD nội tiếp

AD là đường kính

Do đó: ΔACD vuông tại C

Xét ΔAHB vuông tại H và ΔACD vuông tại C có 

\(\widehat{ABH}=\widehat{ADC}\)

Do đó: ΔAHB∼ΔACD

24 tháng 2 2022

có vẽ hình ko ạ ?

 

a: góc ADH+góc AKH=180 độ

=>ADHK nội tiếp

b: góc BKC=góc BDC=90 độ

=>BKDC nội tiếp

=>góc AKD=góc ACB

Xét ΔAKD và ΔACB có

góc AKD=góc ACB

góc A chung

=>ΔAKD đồng dạng với ΔACB