Tìm tất cả các cặp số(x,y,z)biết:
x/4=2y/5=5z/6 và x^2-3y^2+2z^2=325
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\frac{x}{4}=\frac{2y}{5}=\frac{5z}{6}\Leftrightarrow\frac{x}{4.10}=\frac{2y}{5.10}=\frac{5z}{6.10}\Leftrightarrow\frac{x}{40}=\frac{y}{25}=\frac{z}{12}\)
\(\Leftrightarrow\frac{x^2}{1600}=\frac{y^2}{625}=\frac{z^2}{144}\Leftrightarrow\frac{x^2}{1600}=\frac{3y^2}{1875}=\frac{2z^2}{288}=\frac{x^2-3y^2+2z^2}{1600-1875+288}=\frac{325}{13}=25\)
\(\Rightarrow\hept{\begin{cases}\frac{x^2}{1600}=25\\\frac{y^2}{625}=25\\\frac{z^2}{144}=25\end{cases}\Rightarrow\hept{\begin{cases}x^2=40000\\y^2=15625\\z^2=3600\end{cases}\Rightarrow}\hept{\begin{cases}x=\pm200\\y=\pm125\\z=\pm60\end{cases}}}\)
a: Đặt x/8=y/3=z/10=k
=>x=8k; y=3k; z=10k
xy+yz+xz=1206
=>24k^2+80k^2+30k^2=1206
=>k^2=9
TH1: k=3
=>x=24; y=9; z=30
TH2: k=-3
=>x=-24;y=-9; z=-30
b: x/4=2y/5=5z/6
nên 15x=24y=50z
=>x/40=y/25=z/12
Đặt x/40=y/25=z/12=k
=>x=40k; y=25k; z=12k
x^2-3y^2+2z^2=325
=>1600k^2-3*625k^2+2*144k^2=325
=>k^2=25
TH1: k=5
=>x=200; y=125; z=60
TH2: k=-5
=>x=-200; y=-125; z=-60
a)3/7x=8/13y=6/19z và 2x-y-z =-6
b)x/8=y/3=7/10 va xy+yz+zx=1206
c) x/4=2y/5=5z/6 và x2- 3y2+2z2=325
a) \(\frac{3}{7}x=\frac{8}{13}y=\frac{6}{19}z\) và 2x-y-z =-6
=)\(\frac{x}{\frac{7}{3}}=\frac{y}{\frac{13}{8}}=\frac{z}{\frac{19}{6}}=\frac{2x}{\frac{14}{3}}=\frac{y}{\frac{13}{8}}=\frac{z}{\frac{19}{6}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{2x}{\frac{14}{3}}=\frac{y}{\frac{13}{8}}=\frac{z}{\frac{19}{6}}=\frac{2x-y-z}{\frac{14}{3}-\frac{13}{8}-\frac{19}{6}}=\frac{-6}{\frac{-3}{24}}=48\)
\(\Rightarrow\frac{x}{\frac{7}{3}}=48\Rightarrow x=48\times\frac{7}{3}=112\)
\(\Rightarrow\frac{y}{\frac{13}{8}}=48\Rightarrow y=48\times\frac{13}{8}=78\)
\(\Rightarrow\frac{z}{\frac{19}{6}}=48\Rightarrow z=48\times\frac{19}{6}=152\)
Vậy x=112;y=78;z=152
a, Ta có: \(11x=8y\Rightarrow\dfrac{x}{8}=\dfrac{y}{11}\) (1)
\(7y=11z\Rightarrow\dfrac{y}{11}=\dfrac{z}{7}\) (2)
Từ (1) và (2) \(\Rightarrow\dfrac{x}{8}=\dfrac{y}{11}=\dfrac{z}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có: \(\dfrac{x}{8}=\dfrac{y}{11}=\dfrac{z}{7}=\dfrac{10z}{70}=\dfrac{x+y-10z}{8+11-70}=\dfrac{-102}{-51}=2\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{8}=2\\\dfrac{y}{11}=2\\\dfrac{z}{7}=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2.8\\y=2.11\\z=2.7\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=16\\y=22\\z=14\end{matrix}\right.\)
Vậy x = 16, y = 22, z = 14.
Mình làm một câu ví dụ thui nha
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
\(\frac{5x}{50}=2\Rightarrow x=20\)
\(\frac{y}{6}=2\Rightarrow y=12\)
\(\frac{2z}{42}=2\Rightarrow x=42\)
mấy câu khác thì tương tự
tíc mình nha bạn
a) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)
Áp dụng tc dãy tỉ số bằng nhau ta có:
\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
Khi đó: \(\hept{\begin{cases}\frac{5x}{50}=2\Rightarrow x=20\\\frac{y}{6}=2\Rightarrow y=12\\\frac{2z}{42}=2\Rightarrow z=42\end{cases}}\)
e) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
Áp dụng tc dãy tỉ số bằng nhau ta có:
\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{2x+3y-z-5}{9}=\frac{50-5}{9}=5\)
Khi đó: \(\hept{\begin{cases}\frac{2x-2}{4}=5\Rightarrow x=11\\\frac{3y-6}{9}=5\Rightarrow y=17\\\frac{z-3}{4}=5\Rightarrow z=23\end{cases}}\).
đặt: \(\frac{x}{4}=\frac{2y}{5}=\frac{5z}{6}=k\)
\(\Rightarrow\begin{cases}x=4k\\ y=\frac{5k}{2}\\ z=\frac{6k}{5}\end{cases}\) (1)
thay (1) vào biểu thức \(x^2-3y^2+2z^2=325\) ta được:
\(\left(4k\right)^2-3\cdot\left(\frac{5k}{2}\right)^2+2\cdot\left(\frac{6k}{5}\right)^2=325\)
\(16k^2-\frac{75k^2}{4}_{}+\frac{72k^2}{25}=325\)
\(\frac{1600k^2}{100}-\frac{1875k^2}{100}+\frac{288k^2}{100}=325\)
\(\frac{13k^2}{100}=325\Rightarrow13k^2=32500\)
\(=>k^2=2500\Rightarrow k=\pm50\)
\(\left[\begin{array}{l}\begin{cases}x=4k=4\cdot50=200\\ y=\frac{5k}{2}=\frac{5\cdot50}{2}=125\\ z=\frac{6k}{5}=\frac{6\cdot50}{5}=60\end{cases}\\ \begin{cases}x=4k=4\cdot\left(-50\right)=-200\\ y=\frac{5k}{2}=\frac{5\cdot\left(-50\right)}{2}=-125\\ z=\frac{6k}{5}=\frac{6\cdot\left(-50\right)}{5}=-60\end{cases}\end{array}\right.\)
kết luận: \(\left(x;y;z\right)=\left[\begin{array}{l}\left(200;125;60\right)\\ \left(-200;-125;-60\right)\end{array}\right.\)