(a-2y)^3 và (x^2+a^2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: A+B=x+2y+x-2y=2x
A-B=x+2y-x+2y=4y
b: A+B
=2x^2y-x^3-xy^2+1+x^3+xy^2-2
=2x^2y-1
A-B
=2x^2y-x^3-xy^2+1-x^3-xy^2+2
=-2x^3+2x^2y-2xy^2+3
c: A+B
=x^2-2yz+z^2+3yz+5x^2-z^2
=6x^2+yz
A-B
=x^2-2yz+z^2-3yz-5x^2+z^2
=-4x^2+2z^2-5yz

a: \(A=31x^2y^3-2xy^3+\dfrac{1}{4}x^2y^2+2\)
\(B=2xy^3+\dfrac{3}{4}x^2y^2-31x^2y^3-x^2-5\)
P=\(A+B=x^2y^2-x^2-3\)
\(A-B=62x^2y^3-4xy^3-\dfrac{1}{2}x^2y^2+x^2+7\)
b: Khi x=6 và y=-1/3 thì \(P=\left(6\cdot\dfrac{-1}{3}\right)^2-6^2-3=4-36-3=1-36=-35\)

a) `A+B=x^2y+2x^3-xy^2+5+x^3+xy^2-2x^2y-6`
`=(x^2y-2x^2y)+(2x^3+x^3)+(-xy^2+xy^2)+(5-6)`
`=3x^3-x^2y-1`
``
b) `B=A+C`
`<=>C=B-A`
`<=>C=x^3+xy^2-2x^2y-6-(x^2y+2x^3-xy^2+5)`
`<=>C =x^3+xy^2-2x^2y-6-x^2y-2x^3+xy^2-5`
`<=> C=(x^3-2x^3)+(xy^2+xy^2)+(-2x^2y-x^2y)+(-6-5)`
`<=>C=-x^3+2xy^2-3x^2y-11`

B) Ta có: 2x-2y-x2+2xy-y2
⇔ 2(x-y)-(x2-2xy+y2)
⇔ 2(x-y)-(x-y)2
⇔ (x-y)(2-x+y)
Đúng thì tick nhé

\(A=\left(\dfrac{-1}{3}x^5y^2\right).\left(-9xy^3\right)\)
\(A=\left[\left(\dfrac{-1}{3}\right).\left(-9\right)\right].\left(x^5.x\right).\left(y^2.y^3\right)\)
\(A=3x^6y^5\)
\(B=\left(\dfrac{-1}{2}x^2y^3\right).\left(-x^2y^3\right)^3\)
\(B=\left(\dfrac{-1}{2}x^2y^3\right).\left(-x^2\right)^3.\left(y^3\right)^3\)
\(B=\left(\dfrac{-1}{2}x^2y^3\right).\left(-x^6\right).y^9\)
\(B=\left[\left(\dfrac{-1}{2}\right).\left(-1\right)\right].\left(x^2.x^6\right).\left(y^3.y^9\right)\)
\(B=\dfrac{1}{2}x^8y^{12}\)

x = 1 và y = -1 thì mới ra nhé :V
\(A=3xy^2x^3\cdot\left(-x^2y^3\right)^2=3xy^2x^3\cdot x^4y^6=3\left(xx^3x^4\right)\left(y^2y^6\right)=3x^8y^8\)
Hệ số : 3
Biến : x8y8
Thay x = 1 ; y = -1 vào A ta được :
\(3\cdot1^8\cdot\left(-1\right)^8=3\cdot1\cdot1=3\)
Vậy giá trị của A = 3 khi x = 1 ; y = -1
\(B=\left(\frac{1}{2}x^2y^3\right)^2\cdot\left(-2x^3y\right)=\frac{1}{4}x^4y^6\cdot\left(-2x^3y\right)=\left(\frac{1}{4}\cdot-2\right)\left(x^4x^3\right)\left(y^6y\right)=\frac{-1}{2}x^7y^7\)
Hệ số : -1/2
Biến : x7y7
Thay x = 1 ; y = -1 vào B ta được : \(-\frac{1}{2}\cdot1^7\cdot\left(-1\right)^7=-\frac{1}{2}\cdot1\cdot\left(-1\right)=\frac{1}{2}\)
Vậy giá trị của B = 1/2 khi x = 1 ; y = -1

a: =>A-B=3x^2y-4xy^2+x^2y-2xy^2=4x^2y-6xy^2
b: =>B-A=-7xy^2+8x^2y-5xy^2+6x^2y=-12xy^2+14x^2y
=>A-B=12xy^2-14x^2y
c: =>B-A=8x^2y^3-4x^3y-3x^2y^3+5x^3y^2=5x^2y^3+x^3y^2
=>A-B=-5x^2y^3-x^3y^2
d: =>A-B=2x^2y^3-7x^3y+6x^2y^3+3x^3y^2=8x^2y^3-7x^3y+3x^3y^2

\(A=x^2y^3\left(\dfrac{1}{5}+\dfrac{2}{3}-\dfrac{3}{4}+1\right)=\dfrac{67}{60}x^2y^3\)
\(B=x^6y^3\cdot\dfrac{1}{4}x^2y^4z^2=\dfrac{1}{4}x^8y^7z^2\)
\(A+B=\dfrac{67}{60}x^2y^3+\dfrac{1}{4}x^8y^7z^2\)
\(A-B=\dfrac{67}{60}x^2y^3-\dfrac{1}{4}x^8y^7z^2\)
A=x2y3(15+23−34+1)=6760x2y3A=x2y3(15+23−34+1)=6760x2y3
B=x6y3⋅14x2y4z2=14x8y7z2B=x6y3⋅14x2y4z2=14x8y7z2
A+B=6760x2y3+14x8y7z2A+B=6760x2y3+14x8y7z2
A−B=6760x2y3−14x8y7z2

Bài `10`
`a,` Ta có : `x/2=y/3=>(4x)/8 =(3y)/9`
ADTC dãy tỉ số bằng nhau ta có :
`(4x)/8 =(3y)/9=(4x-3y)/(8-9)=(-2)/(-1)=2`
`=> x/2=2=>x=2.2=4`
`=>y/3=2=>y=2.3=6`
`b,` Ta có : `2x=5y=>x/5=y/2`
ADTC dãy tỉ số bằng nhau ta có :
`x/5=y/2=(x+y)/(5+2)=-42/7=-6`
`=>x/5=-6=>x=-6.5=-30`
`=>y/2=-6=>y=-6.2=-12`
Bài `11`
`a,` Ta có : `x/3=y/4=z/6=>x/3=(2y)/8 =(3z)/18`
ADTC dãy tỉ số bằng nhau ta có :
`x/3=(2y)/8=(3z)/18=(x+2y-3z)/(3+8-18)=(-14)/(-7)=2`
`=>x/3=2=>x=2.3=6`
`=>y/4=2=>y=2.4=8`
`=>z/6=2=>z=2.6=12`
Bạn đăng lại `2` câu sau nhe , mình ko hiểu `x=y-z` với `15x-5y=3x=45`
`d,` Ta có :
`x/2=y/3=>x/4=y/6`
`y/2=z/3=>y/6=z/9`
`-> x/4=y/6=z/9=>x/4=(2y)/12 =(3z)/27`
ADTC dãy tỉ số bằng nhau ta có :
`x/4=(2y)/12=(3z)/27=(x-2y+3z)/(4-12+27)=19/19=1`
`=>x/4=1=>x=1.4=4`
`=>y/6=1=>y=1.6=6`
`=>z/9=1=>z=1.9=9`

\(x-\frac{1}{2}=y-\frac{2}{3}=z-\frac{3}{4}\)va \(x-2y+3z=14\)
\(\frac{\Rightarrow\left(x-1\right)}{2}=\frac{\left(-2y+4\right)}{-6}=\frac{\left(3z-9\right)}{12}\)
\(=\frac{\left(x-1-2y+4+3z-9\right)}{\left(2-6+12\right)}\)
\(\Rightarrow-\frac{16}{8}=-2\)
\(\frac{\Rightarrow\left(y-2\right)}{2}=-2\Leftrightarrow x-1=-4\Leftrightarrow x=-3\)
\(\Rightarrow\frac{\left(y-2\right)}{3}=-2\Leftrightarrow x-1=-4\Leftrightarrow x=-3\)
\(\Rightarrow\frac{\left(x-3\right)}{4}=-2\Leftrightarrow z-3=-8\Leftrightarrow z=-5\)
\(b)\)
Theo đề ra:
\(x:y:z=3:4:5\)
\(2x^2+2y^2-3z^2=-100\)
\(\Leftrightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
\(\Leftrightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{z^2}{25}\)
\(\Leftrightarrow\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}\)
Áp dụng tính chất dãy tỷ số bằng nhau:
\(\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}=\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}=4\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x}{3}=4\Leftrightarrow x=12\\\frac{y}{4}=4\Leftrightarrow y=16\\\frac{z}{5}=4\Leftrightarrow z=20\end{cases}}\)
\(\left(a-2y\right)^3\)
\(=a^3-3a^22y+3a\left(2y\right)^2-\left(2y\right)^3\)
\(=a^3-6a^2y+12ay^2-8y^3\)