K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7

B1

Kiểm tra các nghiệm hữu tỉ có thể là nghiệm của phương trình:

Thử x=−1,−0.5,

  • x=−1x = -1: 8(−1)3−6(−1)−1=−8+6−1=−38(-1)^3 - 6(-1) - 1 = -8 + 6 - 1 = -3
  • x=0x = 0: 0−0−1=−10 - 0 - 1 = -1
  • x=0.5x = 0.5: 8(0.5)3−6(0.5)−1=1−3−1=−38(0.5)^3 - 6(0.5) - 1 = 1 - 3 -1 = -3
  • x=1x = 1: 8−6−1=18 - 6 - 1 = 1

Ta thấy hàm số đổi dấu khi đi từ x=0.5 đến x=1, tức là có ít nhất một nghiệm nằm giữa khoảng này.

B2

Vì hàm liên tục trên [−1;1], và có sự đổi dấu, ta có thể khẳng định tồn tại ít nhất một nghiệm x0∈(0.5,1)

B3

Thực hiện lặp lại các bước chia đôi khoảng để xác định nghiệm xấp xỉ (ta có thể dùng máy tính hoặc phần mềm để hỗ trợ). Sau một vài bước, ta tìm được:

x≈0.822875655

B4

Phương trình 8x3−6x−1=08x^3 - 6x - 1 = 0 có duy nhất một nghiệm thực trên đoạn [−1;1][ -1; 1 ], xấp xỉ bằng:

x≈0.82288
16 tháng 4 2017

Phương trình vô nghiệm

NV
20 tháng 7 2021

a.

ĐKXĐ: \(x\ge3\)

(Tốt nhất bạn kiểm tra lại đề cái căn đầu tiên của \(\sqrt{x-3}\) là căn bậc 2 hay căn bậc 3). Vì nhìn ĐKXĐ thì thấy căn bậc 2 là không hợp lý rồi đó

Pt tương đương:

\(\sqrt{x-3}+\sqrt[3]{x^2+1}+\left(x+1\right)\left(x-2\right)=0\)

Do \(x\ge3\Rightarrow x-2>0\Rightarrow\left(x+1\right)\left(x-2\right)>0\)

\(\Rightarrow\sqrt{x-3}+\sqrt[3]{x^2+1}+\left(x+1\right)\left(x-2\right)>0\)

Pt vô nghiệm

NV
20 tháng 7 2021

b.

ĐKXĐ: \(x\ge-\dfrac{3}{2}\)

Pt: \(2x+3-\sqrt{2x+3}-\left(4x^2-6x+2\right)=0\)

Đặt \(\sqrt{2x+3}=t\ge0\) ta được:

\(t^2-t-\left(4x^2-6x+2\right)=0\)

\(\Delta=1+4\left(4x^2-6x+2\right)=\left(4x-3\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}t_1=\dfrac{1+4x-3}{2}=2x-1\\t_2=\dfrac{1-4x+3}{2}=2-2x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x+3}=2x-1\left(x\ge\dfrac{1}{2}\right)\\\sqrt{2x+3}=2-2x\left(x\le1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+3=4x^2-4x+1\left(x\ge\dfrac{1}{2}\right)\\2x+3=4x^2-8x+4\left(x\le1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3+\sqrt{17}}{4}\\x=\dfrac{5-\sqrt{21}}{4}\end{matrix}\right.\)

2 tháng 6 2017

\(\Leftrightarrow\frac{8x^2}{3\left(1-2x\right)\left(1+2x\right)}=\frac{2x}{3\left(2x-1\right)}-\frac{1+8x}{4\left(1+2x\right)}\left(1\right)\)

Điều kiện : \(x\ne\frac{1}{2};\frac{-1}{2}\)

\(\left(1\right)\Leftrightarrow\frac{8x^2.4}{12\left(1-2x\right)\left(1+2x\right)}=\frac{-2x\left(1+2x\right).4}{12\left(1-2x\right)\left(1+2x\right)}-\frac{3\left(1+8x\right)\left(1-2x\right)}{12\left(1+2x\right)\left(1-2x\right)}\)

=> 32x2 = -8x(1+2x) - 3(1+8x)(1-2x)

<=> 32x2 = -8x - 16x2 + (-3-24x)(1-2x)

<=> 32x2 = -16x2 -8x -3 + 6x - 24x + 48x2

<=> -26x = 3

<=> x= -3/26 (nhận)

Vậy tập nghiệm \(S=\left\{\frac{-3}{26}\right\}\)

16 tháng 12 2021

Bài 1: 

b: \(\Leftrightarrow x-2=0\)

hay x=2

16 tháng 12 2021

anh ơi, vậy là sai đề hả anh, chứ đề kêu chứng minh phương trình vô nghiệm mà em thấy anh ghi x=2

Sửa đề: 8x-1

=>2(8x^2-x)(8x^2-x+2)-126=0

=>2[(8x^2-x)^2+2(8x^2-x)]-126=0

=>(8x^2-x)^2+2(8x^2-x)-63=0

=>(8x^2-x+9)(8x^2-x-7)=0

=>8x^2-x-7=0

=>x=1 hoặc x=-7/8

30 tháng 6 2017

a)Đk:\(x\ge\frac{1}{2}\)

\(pt\Leftrightarrow4x^2-12x+4+4\sqrt{2x-1}=0\)

\(\Leftrightarrow\left(2x-1\right)^2-4\left(2x-1\right)-1+4\sqrt{2x-1}=0\)

Đặt \(t=\sqrt{2x-1}>0\Rightarrow\hept{\begin{cases}t^2=2x-1\\t^4=\left(2x-1\right)^2\end{cases}}\)

\(t^4-4t^2+4t-1=0\)

\(\Leftrightarrow\left(t-1\right)^2\left(t^2+2t-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}t-1=0\\t^2+2t-1=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}t=1\\t=\sqrt{2}-1\end{cases}\left(t>0\right)}\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=2-\sqrt{2}\end{cases}}\) là nghiệm thỏa pt