Cho a, b, c ∈ Z. Chứng tỏ rằng nếu \(a+b=1\) thì:
a^2+ab+ac+bc=a+c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
ab - ac + bc - c^2 = -1
<=> a(b - c) + c(b - c) = -1
<=> (a + c)(b - c) = -1
Vì tích trên âm nên hai thừa số này trái dấu và thuộc ước của -1 {-1; 1}
TH1: giả sửa a =b => b+c = -(-b-c)
=> b+c = -b+c
=> b= -b
=> b=0
=> a+c = 0 - c= -c
=> a= -c + c = 0
Như vậy a=b=0 và a và b cũng là số đối của nhau ( 1 )
TH2: a khác b
Có a + c và b -c vì có tích là -1 nên một trong hai thừ số là 1, và còn lại là -1
=> a + c + b - c = -1 + 1 = 0
=> a + b = 0
Do a khác b mà tổng của a và b bằng o nên a và b là hai số đối nhau ( 2 )
Từ ( 1 ) và ( 2 ) => điều phải chứng minh
k cho mình nha. Mình đang bị âm điểm ^_^
a)
a b . a c = a 2 b c a b + a c = a c + a b b c = a ( b + c ) b c = a 2 b c ⇒ a b . a c = a b + a c
b)
a = 12 ; b = − 5 ⇒ c = 17 12 − 5 . 12 17 = − 144 85 12 − 5 + 12 17 = − 204 85 + 60 85 = − 144 85 ⇒ 12 − 5 . 12 17 = 12 − 5 + 12 17
Ta có :
ab - ac + bc - c2 = -1
\(\Leftrightarrow\)a . ( b - c ) + c . ( b - c ) = -1
\(\Leftrightarrow\)( a + c ) . ( b - c ) = -1
\(\Leftrightarrow\)b - c và a + c phải khác dấu tức là b - c = - ( a + b )
\(\Leftrightarrow\)b - c = -a - c
\(\Leftrightarrow\)b = -a
Vậy a và b là hai số đối nhau
Từ a+b=c +d suy ra d = a+b-c
Vì tích ab là số liền sau của tích cd nên ab-cd = 1
\(\Leftrightarrow\)ab - c.(a+b-c)=1
\(\Leftrightarrow\)ab - ac - bc + c2 = 1
\(\Leftrightarrow\)a.(b-c)-c.(b-c)=1
\(\Leftrightarrow\)(b-c).(a-c)=1
\(\Rightarrow\)a-c=b-c (vì cùng bằng 1 hoặc -1 )
\(\Rightarrow\)a=b
mình nha
Ta có: AB+AC=BC<=>2+4=6
Theo BĐTTG, tổng độ dài 2 đoạn thẳng = độ dài đoạn thứ 3 thì 3 điểm đó thẳng hàng
Vậy A,B,C thẳng hàng
Ta có:
\(a^2+ab+ac+bc\)
\(=c\left(a+b\right)+a\left(a+b\right)\)
Thay \(a+b=1\) vào bthức trên ta được:
\( =c.1+a.1 \)
\(=c+a=a+c\Rightarrowđpcm\)
đpcm là gì vậ?