tìm tất cả stn n để 1x2x3x...xn+2024 là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Giải:
Với n = 1 thì A = 1 = 1\(^2\) (thỏa mãn)
Nếu n = 2 thì A = 1 + 1.2 = 3(loại) vì số chính phương không thể có tận cùng bằng 3
Nếu n = 3 thì A = 1 +1.2 + 1.2.3 = 1+2+2.3 = 1+2+6 = 3+6 =9=3\(^2\)
Nhận.
Nếu n = 4 Thì A = 1+1.2 + 1.2.3 + 1.2.3.4
A = 1 + 2 + 2.3 + 2.3.4
A = 1 + 2 + 6 + 6.4
A = 1 + 2 + 6 + 24
A = 3 + 6 + 24
A = 9 + 24
A = 33 (loại vì số chính phương không thể có tận cùng là 3)
Nếu n ≥ 5 thì A = 1+1.2+1.2.3+1.2.3.4 + 1.2.3.4.5 + ...+ 1.2.3.4.5.n
A = 33 + 1.2.3.4.5+ ...+ 1.2.3.4.5...n
A = 3 + 5.6 + 1.2.3.4.5 + ..+ 1.2.3.4.5...n
A : 5 dư 3 (loại vì số chính phương chia 5 chỉ có thể dư 0,1 hoặc 4)
Vậy n = 1; n = 3 là hai giá trị thỏa mãn đề bài

Bài 3
A = 1.2.3...n + 2024
Nếu n = 1 thì A = 1 + 2024
A = 2025
A = \(45^2\) (thỏa mãn)
Nếu n = 2 thì A = 1.2 + 2024
A = 2 + 2024
A = 2026
2026 : 8 = 253 dư 2 loại vì số chính phương chia 8 chỉ có thể dư 1 hoặc 4
Nếu n ≥ 3 thì A = 1.2.3..n + 2024
1.2.3...n ⋮ 3; 2024 : 3 = 674 dư 2
⇒ A ⋮ 3 dư 2 (loại vì số chính phương chia 3 chỉ có thể dư 1 hoặc không dư)
Vậy n = 1 là giá trị duy nhất thỏa mãn đề bài.

Giải:
Với n = 1 thì A = 1 = 1\(^2\) (thỏa mãn)
Nếu n = 2 thì A = 1 + 1.2 = 3(loại) vì số chính phương không thể có tận cùng bằng 3
Nếu n = 3 thì A = 1 +1.2 + 1.2.3 = 1+2+2.3 = 1+2+6 = 3+6 =9=3\(^2\)
Nhận.
Nếu n = 4 Thì A = 1+1.2 + 1.2.3 + 1.2.3.4
A = 1 + 2 + 2.3 + 2.3.4
A = 1 + 2 + 6 + 6.4
A = 1 + 2 + 6 + 24
A = 3 + 6 + 24
A = 9 + 24
A = 33 (loại vì số chính phương không thể có tận cùng là 3)
Nếu n ≥ 5 thì A = 1+1.2+1.2.3+1.2.3.4 + 1.2.3.4.5 + ...+ 1.2.3.4.5.n
A = 33 + 1.2.3.4.5+ ...+ 1.2.3.4.5...n
A = 3 + 5.6 + 1.2.3.4.5 + ..+ 1.2.3.4.5...n
A : 5 dư 3 (loại vì số chính phương chia 5 chỉ có thể dư 0,1 hoặc 4)
Vậy n = 1; n = 3 là hai giá trị thỏa mãn đề bài

a.đặt a+15=b2;a-1=c2
=>(a+15)-(a-1)=b2-c2=(b+c)(b-c)
=>(b+c)(b-c)=16
ta có 2 nhận xét:
*(b+c)-(b-c)=2c là 1 số chẵn nên 2 số b+c và b-c là 2 số cùng tính chẵn lẻ.Mà 16 là số chẵn nên 2 số b+c và b-c cùng chẵn.
*b+c>b-c(vì a là số tự nhiên)
=>b+c=8 và b-c=2 =>b=(8+2):2=5
vậy a+15=52=>a=10

Giả sử \(A=n^2+4n+11\) là số chính phương
đặt \(n^2+4n+11=k^2>0\)
\(\Rightarrow\left(n^2+4n+4\right)+7=k^2\\ \Rightarrow\left(n+2\right)^2-k^2=-7\\ \Rightarrow\left(n-k+2\right)\left(n+k+2\right)=-7\)
Ta có n,k>0⇒n+k+2>0; n-k+2<n+k+2; n-k+2,n+k+2∈Ư(-7)
Ta có bảng:
n-k+2 | -1 | -7 |
n+k+2 | 7 | 1 |
n | 1 | -5(loại) |
k | 4 | 4 |
Vậy n=1



Số cây cam là:
120:(2+3)x2=48(cây)
Số cây xoài là:
120:(5+1)=20(cây)
Số cây chanh là:
120-(48+20)=52(cây)
Đáp số:52 cây
P/s cho tớ xin lỗi nha nếu bạn nào thì sau này mình sẽ ủng hộ lại ok
Hãy tích cho tui đi
khi bạn tích tui
tui không tích lại bạn đâu
THANKS
1 là số tự nhiên duy nhất của n để thỏa mãn yêu cầu trên
Bài giải:
Ta có:
\(A=1\times2\times3\times\ldots\times n+2024=n!+2024\)
Vì \(A\) là số chính phương nên:
\(n ! + 2024 = k^{2} \left(\right. k \in \mathbb{N} \left.\right)\)
Ta xét thử từng giá trị nhỏ của \(n\):
\(n\)nnn
\(n !\)
\(n ! + 2024\)
\(k^{2}\)
\(k\)
Là số chính phương?
1
\(1\)
\(2025\)
\(2025\)
\(45\)
Có
2
\(2\)
\(2026\)
—
—
Không
3
\(6\)
\(2030\)
—
—
Không
4
\(24\)
\(2048\)
—
—
Không
5
\(120\)
\(2144\)
—
—
Không
6
\(720\)
\(2744\)
\(52.3\) \(8^2\)
—
Không
Vì \(n !\) tăng rất nhanh, nên với \(n \geq 5\), giá trị \(n ! + 2024\) không thể là số chính phương nữa.
Đáp số: \(n = 1\)