Vẽ hình tam giác \(ABC\) : \(A=3 cm; B=5cm;C=4cm \). Tính chu vi hình tam giác.
Giúp mình với !!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Gọi độ dài ba cạnh lần lượt là a,b,c
Theo đề, ta có: a/4=b/5=c/7 và a+b+c-2a=2
Áp dụng tính chất của DTBSN, ta được:
\(\dfrac{a}{4}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{a+b+c-2a}{4+5+7-2\cdot4}=\dfrac{2}{8}=\dfrac{1}{4}\)
=>a=1; b=5/4; c=7/4
b: Gọi độ dài ba cạnh lần lượt là a,b,c
Theo đề, ta có:
a/2=b/4=c/5
Áp dụng tính chất của DTSBN, ta đc:
\(\dfrac{a}{2}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{2+4+5}=\dfrac{33}{11}=3\)
=>a=6; b=12; c=15
Gọi độ dài các cạnh tam giác ABC là a;b;c (a;b;c > 0)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a}{4}=\frac{b}{5}=\frac{c}{6}=\frac{a+b+c}{4+5+6}=\frac{30}{15}=2\)
Suy ra \(\frac{a}{4}=2\Rightarrow a=2\cdot4=8\)
\(\frac{b}{5}=2\Rightarrow b=2\cdot5=10\)
\(\frac{c}{6}=2\Rightarrow c=2\cdot6=12\)
Vậy độ dài các cạnh của tam giác ABC là 8;10;12 (cm)
Gọi 3 cạnh của tam giác lần lượt là a, b, c
Theo đề, ta có: \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)và a + b + c = 36
Theo tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{36}{12}=3\)
=> a = 3.3 = 9; b = 3.4 = 12; c = 3.5 = 15
Vậy độ dài 3 cạnh của tam giác đó lần lượt là 9cm, 12cm, 15cm.
\(a,\) Gọi độ dài 3 cạnh là a,b,c(cm;0<a<b<c<120)
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{120}{12}=10\\ \Rightarrow \begin{cases} a=10.3=30\\ b=10.4=40\\ c=10.5=50 \end{cases} \)
Vậy ...
\(b,\) Gọi độ dài 3 cạnh là a,b,c(cm;0<a<b<c)
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{c-a}{7-3}=\dfrac{80}{4}=20\\ \Rightarrow \begin{cases} a=20.3=60\\ b=20.5=100\\ c=20.7=140 \end{cases}\\ \Rightarrow P=a+b+c=300(cm)\)
Gọi độ dài các cạnh của tam giác lần lượt là x, y, z (cm)
Theo đề bài ta có x + y + z = 36 và
Chọn đáp án B
Lời giải:
Gọi độ dài các cạnh của tam giác là $a,b,c$ lần lượt tỉ lệ với $4,5,7$. Khi đó, a là cạnh nhỏ nhất.
Theo bài ra ta có:
$\frac{a}{4}=\frac{b}{5}=\frac{c}{7}$
$a+b+c-2a=b+c-a=24$
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{a}{4}=\frac{b}{5}=\frac{c}{7}=\frac{b+c-a}{5+7-4}=\frac{24}{8}=3$
$\Rightarrow a=4.3=12$ (cm); $b=3.5=15$ (cm); $c=3.7=21$ (cm)
Dễ v:, làm chơi
Gọi ba cạnh của tam giác là a,b,c (cm)
Theo đề, ta có: \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+b+c}{2+3+4}=\frac{45}{9}=5\)
\(\Rightarrow\hept{\begin{cases}a=5.2=10\\b=5.3=15\\c=5.4=20\end{cases}}\)
gọi tam giác đó là x; y; z, ta có:
các cạnh x; y; z tỉ lệ với các số 2; 3; 4, ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
ap dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{45}{9}=5\)
=> x = 5.2 = 10 (cm)
y = 5.3 = 15 (cm)
z = 5.4 = 20 (cm)
vậy: độ dài các cạnh lần lượt là: 10; 15; 20
Vì tam giác \(ABC\) đồng dạng với tam giác \(A'B'C'\) nên tam giác \(A'B'C'\) đồng dạng với tam giác \(ABC\). Do đó, \(\frac{{A'B'}}{{AB}} = \frac{{B'C'}}{{BC}} = \frac{{A'C'}}{{AC}}\) (các cặp cạnh tương ứng có cùng tỉ lệ)
Thay số, \(\frac{{A'B'}}{4} = \frac{{B'C'}}{9} = \frac{{A'C'}}{6}\). Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{{A'B'}}{4} = \frac{{B'C'}}{9} = \frac{{A'C'}}{6} = \frac{{A'B' + B'C' + A'C'}}{{4 + 6 + 9}} = \frac{{66,5}}{{19}} = 3,5\)
Ta có:
\(\left\{ \begin{array}{l}\frac{{A'B'}}{4} = 3,5 \Rightarrow A'B' = 3,5.4 = 14\\\frac{{A'C'}}{6} = 3,5 \Rightarrow A'C' = 3,5.6 = 21\\\frac{{B'C'}}{9} = 3,5 \Rightarrow B'C' = 3,5.9 = 31,5\end{array} \right.\)
Vậy \(A'B' = 14cm,A'C' = 21cm,B'C' = 31,5cm\).
Giải:
Chu vi của hình tam giác là:
3 + 5 + 4 = 12(cm)
Đáp số: 12cm
3 + 5 + 4 = 12 ( cm )