K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác BFEC có \(\hat{BFC}=\hat{BEC}=90^0\)

nên BFEC là tứ giác nội tiếp đường tròn đường kính BC

=>\(\hat{BFE}+\hat{BCE}=180^0\)

\(\hat{BFE}+\hat{AFE}=180^0\) (hai góc kề bù)

nên \(\hat{AFE}=\hat{ACB}\)

Xét tứ giác AEHF có \(\hat{AEH}+\hat{AFH}=90^0+90^0=180^0\)

nên AEHF là tứ giác nội tiếp đường tròn đường kính AH

Xét ΔAFE và ΔACB có

\(\hat{AFE}=\hat{ACB}\)

góc FAE chung

Do đó: ΔAFE~ΔACB

=>\(\frac{AF}{AC}=\frac{AE}{AB}\)

=>\(AF\cdot AB=AE\cdot AC\)

b: Xét ΔABC có

CF,BE là các đường cao

CF cắt BE tại H

Do đó: H là trực tâm của ΔABC
=>AH⊥BC

=>IH⊥KM

TA có: BFEC nội tiếp đường tròn đường kínhBC

mà M là trung điểm của BC

nên ME=MF

=>M nằm trên đường trung trực của EF(1)

Ta có: AEHF nội tiếp đường tròn đường kính AH

mà I là trung điểm của AH

nên IF=IE

=>I nằm trên đường trung trực của FE(2)

Từ (1),(2) suy ra MI là đường trung trực của EF

=>MI⊥FE

Xét ΔIKM có

KN,IH là các đường cao

KN cắt IH tại N

Do đó N là trực tâm của ΔIKM

=>MN⊥KI

c: Xét ΔBAC có \(\frac{BC}{\sin BAC}=2R\)

=>\(\frac{BC}{sin60}=2R\)

=>\(BC=2R\cdot\sin60=2R\cdot\frac{\sqrt3}{2}=R\sqrt3\)

Xét (O) có \(\hat{BAC}\) là góc nội tiếp chắn cung BC

=>\(\hat{BOC}=2\cdot\hat{BAC}=120^0\)

Diện tích hình quạt tròn OBC là:

\(S_{q\left(BOC\right)}=\frac{\pi\cdot R^2\cdot n}{360}=\frac{\pi\cdot R^2\cdot120}{360}=\pi\cdot R^2\cdot\frac13\)

a: góc BMH+góc BKH=180 độ

=>BMHK nội tiếp

góc BKC=góc BQC=90 độ

=>BKQC nội tiếp

b: Xét ΔFAB và ΔFCA có

góc FAB=góc FCA(=1/2sđ cung AB)

góc F chung

=>ΔFAB đồng dạng với ΔFCA

=>FA/FC=FB/FA

=>FA^2=FC*FB

a: góc BHD+góc BMD=180 độ

=>BHDM nội tiếp

b: BHDM nội tiếp

=>góc HDM+góc HBM=180 độ

=>góc ADM=góc ABC

=>góc ADM=góc ADC

=>DA là phân giáccủa góc MDC

c: Xét tứ giác DHNC có

góc DHC=góc DNC=90 độ

=>DHNC nội tiếp

=>góc NHD=góc NDC

góc NHD+góc MHD

=180 độ-góc NCD+góc MBD

=180  độ+180 độ-góc ABD-góc ACD

=180 độ

=>M,H,N thẳng hàng

11 tháng 3 2022

Do BM là tiếp tuyến của đường tròn nên \widehat{OBM}=90^o
o

Xét đường tròn (O) có AD là một dây cung. Lại có E là trung điểm AD nên theo tính chất của đường kính và dây cung, ta có OE\perp ADOEAD hay \widehat{OEM}=90^oOEM=90o.

Xét tứ giác OEBM có \widehat{OBM}=\widehat{OEM}=90^oOBM=OEM=90o, chúng lại là hai góc kề nhau nên OEBM là tứ giác nội tiếp.

 
               
 
11 tháng 3 2022

Cho tam giác ABCABC có ba góc nhọn nội tiếp đường tròn tâm OO (AB < AC)(AB<AC). Hai tiếp tuyến tại BB và CC cắt nhau tại MMAMAM cắt đường tròn (O)(O) tại điểm thứ hai DD. Gọi EE là trung điểm đoạn ADAD. Chứng minh OEBMOEBM là tứ giác nội tiếp.

theo bai ta co E là trung điểm đoạn ADAD

ma AD la mot day cung thuoc (O)

=> OE vuong goc voi AD 

hay goc OEM = 90 (1)

Mat khac, BM vuong goc voi OB tai B (gt)

hay goc OBM= 90 (2)

Tu (1) va (2) suy ra tu giac OEBM noi tiep

a: góc AEH+góc AFH=180 độ

=>AEHF nội tiếp

b: góc DFC=góc EBC

góc EFC=góc DAC

góc EBC=góc DAC

=>góc DFC=góc EFC

23 tháng 1 2020

1)Cho tam giác nhọn ABC (AB<AC) nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC, K là giao điểm thứ hai của AH với đường tròn (O). Đường thẳng đi qua H và vuông góc với OA cắt BC ở I. Chứng minh rằng IK là tiếp tuyến của đường tròn (O)

 ~~~~~~~~~ Bài làm ~~~~~~~~~

A B C O I K H Q D

Ta có: \(\widehat{HBD}=\widehat{DAC}\) (Cùng phụ với \(\widehat{ACB}\))

\(\widehat{KBD}=\widehat{DAC}\)( Góc nối tiếp cùng chắn cung \(KC\))

\(\Rightarrow\widehat{HBD}=\widehat{KBD}\)

Ta lại có: \(BD\perp HK\)

\(\Rightarrow BD\) là đường trung trực của \(HK\)

\(\Rightarrow\Delta IHK\) cân tại \(I\)

\(\Rightarrow\widehat{BKD}=\widehat{BHD}=\widehat{AHQ}\)

Lại có:\(\widehat{DKO}=\widehat{HAO}\)\(\Delta OKA\) cân tại \(O\))

Vì vậy: \(\widehat{DKO}+\widehat{BKD}=\widehat{HAO}+\widehat{AHQ}=90^0\)

\(\Rightarrow\widehat{KIO}=90^0\)

\(\Rightarrow IK\)là tiếp tuyến của đường tròn \(\left(O\right)\)

(Hình vẽ chỉ mang tính chất minh họa cái hình vẽ gần cả tiếng đồng hồ :)) )

24 tháng 1 2020

Ủa bạn ơi sao phụ nhau? Dòng đầu ấy