cho nửa đường tròn (O;R) và hai đường kính PQ và MN vuông góc với nhau .Lấy điểm A trên cung nhỏ PN,PA cắt MN tại B,AQ cắt MN tại E.1)Chứng minh tứ giác OABQ nội tiếp 2)Nối AM cắt PQ và PN lần lượt tại C và I.Chứng minh rằng:MC*MA không đổi khi A di chuyển trên cung nhỏ PN.3)Chứng minh IN=căn2 của EN.4) Tìm vị trí của điểm A để diện tích tam giác ACE đạt giá trị lớn nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: góc CAO+góc CMO=180 độ
=>CAOM nội tiếp
góc DMO+góc DBO=180 độ
=>DMOB nội tiếp
b: Xét (O) có
CM,CA là tiếp tuyến
=>CM=CA và OC là phân giác của góc MOA(1)
Xét (O) có
DM,DB là tiếp tuyến
=>DM=DB và OD là phân giác của góc MOB(2)
Từ (1), (2) suy ra góc DOC=1/2*180=90 độ
Xét ΔDOC vuông tại O có OM là đường cao
nên CM*MD=OM^2
=>AC*BD=R^2

∆ ACB nội tiếp trong đường tròn (O) có AB là đường kính nên ∆ ABC vuông tại C
CO = OA = (1/2)AB (tính chất tam giác vuông)
AC = AO (bán kính đường tròn (A))
Suy ra: AC = AO = OC
∆ ACO đều góc AOC = 60 °
∆ ADB nội tiếp trong đường tròn đường kính AB nên ∆ ADB vuông tại D
DO = OB = OA = (1/2)AB (tính chất tam giác vuông)
BD = BO(bán kính đường tròn (B))
Suy ra: BO = OD = BD
∆ BOD đều

Mà AD, CO là hai đường chéo của hình thoi AODC nên AD vuông góc với OC

Trong đường tròn (O) ta có:
góc ADC = góc ABC (2 góc nội tiếp cùng chắn cung AC

A B C D H E O
a/ Nối A với D ta có
\(\widehat{ADB}=90^o\) (góc nội tiếp chắn nửa đường tròn) \(\Rightarrow AD\perp BC\)
=> H và D cùng nhìn AC dưới 1 góc vuông => AHDC là tứ giác nội tiếp
b/
Xét tg vuông ACO có
\(\widehat{ACO}+\widehat{AOC}=90^o\)
Ta có \(\widehat{ADH}+\widehat{EDB}=\widehat{ADB}=90^o\)
Xét tứ giác nội tiếp AHDC có
\(\widehat{ACO}=\widehat{ADH}\) (Góc nội tiếp cùng chắn cung AH)
\(\Rightarrow\widehat{AOC}=\widehat{EDB}\)
Xét tam giác EOH và tg EBD có
\(\widehat{BED}\) chung
\(\widehat{AOC}=\widehat{EDB}\)
=> tg EOH đồng dạng với tg EDB (g.g.g)
\(\Rightarrow\dfrac{EH}{EB}=\dfrac{EO}{ED}\Rightarrow EH.ED=EO.EB\)
a) Ta có \(\widehat{ADB}=90^0\) (góc nội tiếp chắn nửa đường tròn) \(\Rightarrow\widehat{ADC}=90^0\)
Tứ giác \(AHDC\) có: \(\widehat{ADC}=\widehat{AHC}=90^0\) mà 2 góc này nội tiếp và chắn cung AC
\(\Rightarrow AHDC\) là tứ giác nội tiếp
b) Tứ giác \(AHDC\) nội tiếp \(\Rightarrow\widehat{ACO}=\widehat{ADE}\) (góc nội tiếp cùng chắn 1 cung)
Ta có: \(\widehat{EOH}=90^0-\widehat{ACO}=90^0-\widehat{ADE}=\widehat{EDB}\)
Xét \(\Delta EOH\) và \(\Delta EDB\) có:
\(\widehat{BED}\) chung
\(\widehat{EOH}=\widehat{EDB}\) (đã chứng minh)
\(\Rightarrow\Delta EOH\sim\Delta EDB\) (g.g) \(\Rightarrow\dfrac{EO}{EH}=\dfrac{ED}{EB}\Rightarrow EH.ED=EO.EB\)
giúp mình câu 4 nhé
- Ta có \(\angle P A Q = 9 0^{\circ}\) (góc nội tiếp chắn nửa đường tròn).
- Xét tứ giác \(O A B Q\), ta có \(\angle O B A + \angle O Q A = \left(\right. 9 0^{\circ} - \angle A O B \left.\right) + \left(\right. 9 0^{\circ} - \angle A O Q \left.\right) = 18 0^{\circ} - \left(\right. \angle A O B + \angle A O Q \left.\right) = 18 0^{\circ} - \angle B O Q\).
- Vì \(\angle P A Q = 9 0^{\circ}\), nên \(\angle O B A + \angle O Q A = 18 0^{\circ} - 9 0^{\circ} = 9 0^{\circ}\).
- Suy ra \(\angle O B A + \angle O Q A = 9 0^{\circ}\).
- Vậy tứ giác \(O A B Q\) nội tiếp (tứ giác có tổng hai góc đối bằng \(18 0^{\circ}\)).
2) Chứng minh \(M C \cdot M A\) không đổi:- Xét \(\triangle A M C\) và \(\triangle Q M C\), ta có \(\angle M A C = \angle M Q C\) (cùng chắn cung \(A Q\)).
- \(\angle A M C\) chung.
- Suy ra \(\triangle A M C sim \triangle Q M C\) (g.g).
- Do đó \(\frac{M C}{M Q} = \frac{M A}{M C}\), suy ra \(M C^{2} = M A \cdot M Q\).
- Vì \(M , Q\) cố định nên \(M Q\) không đổi. Mà \(M C \cdot M A = R^{2}\) (hằng số).
- Vậy \(M C \cdot M A\) không đổi khi \(A\) di chuyển trên cung nhỏ \(P N\).
3) Chứng minh \(I N = \sqrt{2} E N\):- Gọi \(R\) là bán kính đường tròn. Vì \(M N \bot P Q\) tại \(O\) nên \(O M = O N = O P = O Q = R\).
- Vì \(O A\) là phân giác \(\angle M O P\) nên \(\angle M O A = 4 5^{\circ}\).
- Xét \(\triangle O N A\) vuông tại \(O\), ta có \(O A = O N = R\), suy ra \(\triangle O N A\) vuông cân tại \(O\).
- Do đó \(A N = R \sqrt{2}\).
- Ta có \(\angle O A E = \angle O A I = 4 5^{\circ}\).
- Xét \(\triangle A E N\) và \(\triangle A I N\), ta có \(\angle A E N = \angle A I N = 9 0^{\circ}\), \(A N\) chung, \(\angle E A N = \angle I A N = 4 5^{\circ}\).
- Suy ra \(\triangle A E N = \triangle A I N\) (g.c.g).
- Do đó \(E N = I N\).
- Vậy \(I N = \sqrt{2} E N\).
4) Tìm vị trí của điểm \(A\) để diện tích tam giác \(A C E\) đạt giá trị lớn nhất:- Diện tích tam giác \(A C E\) là \(S_{A C E} = \frac{1}{2} A C \cdot C E \cdot sin \angle A C E\).
- Để \(S_{A C E}\) lớn nhất thì \(A C \cdot C E\) lớn nhất (vì \(\angle A C E\) không đổi).
- Ta có \(A C \cdot C E \leq \frac{\left(\right. A C + C E \left.\right)^{2}}{4}\).
- \(A C + C E = A E\).
- Vậy \(S_{A C E}\) lớn nhất khi \(A C = C E\), tức là \(A\) là điểm chính giữa cung \(P N\).
Kết luận: