K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ΔMNP cân tại M

mà MQ là đường trung tuyến

nên MQ⊥NP tại Q

Q là trung điểm của NP

=>\(QN=\frac{NP}{2}=\frac{48}{2}=24\left(\operatorname{cm}\right)\)

ΔMQN vuông tại Q

=>\(QM^2+QN^2=MN^2\)

=>\(MN^2=10^2+24^2=100+576=676\)

=>\(MN=\sqrt{676}=26\left(\operatorname{cm}\right)\)

1 tháng 5

cách làm của mình:
vì mq là trung tuyến nên q là trung điểm np
suy ra nq=24cm
tam giác mnp nên trung tuyến cũng là đường cao
suy ra tam giác mnq vuông tại q
Pytago: mq^2+nq^2=mn^2
=10^2+24^2=mn^2
=100+576=676
mn^2=676=26^2
suy ra mn=26

a: \(MN=\sqrt{NP^2-MP^2}=8\left(cm\right)\)

nên NQ=4(cm)

b: Xét ΔQMP và ΔQND có 

QM=QN

\(\widehat{MQP}=\widehat{NQD}\)

QP=QD

Do đó; ΔQMP=ΔQND

Suy ra: MP=ND

a: Xét ΔMQN và ΔMQP có

MQ chung

\(\widehat{NMQ}=\widehat{PMQ}\)

MN=MP

Do đó; ΔMQN=ΔMQP

b: Ta có: ΔMNP cân tại M

mà MQ là đường phân giác

nên MQ là đường cao

c: Xét ΔMNP có

MQ là đường trung tuyến

NI là đường trung tuyến

MQ cắt NI tại G

DO đó:G là trọng tâm

=>PG đi qua trung điểm của MN

d: Xét ΔMNP có

Q là trung điểm của NP

I là trung điểm của MP

Do đó: QI là đường trung bình

=>QI//MN

21 tháng 3 2021

M N P Q 8 12 10

Xét tam giác MNP có NQ là tia phân giác ^MNP nên 

\(\frac{NM}{NP}=\frac{MQ}{QP}\)mà \(MQ=MP-QP=5-QP\)(1) 

hay \(\frac{8}{12}=\frac{5-QP}{QP}\Rightarrow8QP=60-12QP\)

\(\Leftrightarrow20QP=60\Leftrightarrow QP=3\)cm 

suy ra (1) \(MQ=5-3=2\)cm 

Vậy QP = 3 cm ; MQ = 2cm 

21 tháng 3 2021

Ta có NQ là ta phân giác 

\(\Rightarrow\)MQ=PQ mà MQ+PQ=MP =10 cm

\(\Rightarrow\)MQ=PQ=10:2=5(CM)

Vậy ...........

a: Xét ΔMNP và ΔPQM có

MN=PQ

NP=QM

MP chung

=>ΔMNP=ΔPQM

b: Xét tứ giác MNPQ có

MQ=NP

MN=PQ

=>MNPQ là hình bình hành

=>MN//PQ và MQ//NP

a: \(NP=\sqrt{12^2+16^2}=20\left(cm\right)\)

Xét ΔMNP có MQ là phân giác

nên QN/MN=QP/MP

=>QN/3=QP/4=(QN+QP)/(3+4)=20/7

=>QN=60/7cm; QP=80/7cm

b: QE//MN

=>PQ/PN=EQ/MN

=>EQ/12=80/7:20=4/7

=>EQ=48/7cm

c: MH=12*16/20=9,6cm

\(MQ=\dfrac{2\cdot12\cdot16}{12+16}\cdot cos45=\dfrac{48\sqrt{2}}{7}\left(cm\right)\)

\(HQ=\sqrt{MQ^2-MH^2}=\dfrac{48}{35}\left(cm\right)\)

17 tháng 8 2016

Vì PQ là phân giác góc P trong ΔMNP

=> \(\frac{PM}{PN}\)\(\frac{QM}{QN}\)

<=> \(\frac{6}{8}\)\(\frac{QM}{QN}\)

<=> \(\frac{QN}{8}\)\(\frac{QM}{6}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{QN}{8}\)\(\frac{QM}{6}\)\(\frac{QN+QM}{6+8}\)\(\frac{MN}{14}\)\(\frac{10}{14}\)\(\frac{5}{7}\)

=> QM = \(\frac{5}{7}\) . 6 = \(\frac{30}{7}\) (cm)

6 tháng 10 2021

Xét tam giác MNP vuông góc tại M:
- áp dụng định lí Pytago ta có
  NP2=MN2+MP2
=> NP2=92+122
=> NP2=225
=> NP=15cm
xét tam giác MNP vuông góc tại M có MQ là đường trung tuyến
=>MQ=1/2NP=1/2.15=7,5(cm)
 

6 tháng 10 2021

Xét tam giác MNP vuông tại M:

\(NP^2=MN^2+MP^2\left(pytago\right)\)

\(\Rightarrow NP^2=9^2+12^2=225\Rightarrow NP=15\left(cm\right)\)

Xét tam giác MNP vuông tại M có MQ là trung tuyến

\(\Rightarrow MQ=\dfrac{1}{2}NP=\dfrac{1}{2}.15=7,5\left(cm\right)\)