Cho A= 1/4 + 1/5 + 1/6 + 1/7 +...+ 1/23
Chứng tỏ rằng A<1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.




Ta có:
\(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}< \frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}\)
Mà \(\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=\frac{1}{4}.4=1\)
=>\(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}< 1\) (1)
\(\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}< \frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}\)Mà \(\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}=\frac{1}{8}.8=1\)
=> \(\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}< 1\) (2)
Từ (1) và (2)
=> A=\(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+...+\frac{1}{14}+\frac{1}{15}< 1+1\)
=> A<2


* Ta có : 1/21 >1/30 ;1/22 >1/30 ;...;1/29 >1/30
=> 1/21 +1/22 +...+1/29 +1/30 >1/30 +1/30 +...+1/30 =10/30 =1/3 (1)
1/31 >1/40 ;1/32 >1/40 ;...;1/39 >1/40
=> 1/31 +1/32 +...+1/39 +1/30 >1/40 +1/40 +...+1/40 =10/40 =1/4 (2)
Từ (1) và (2)
=> 1/21 +1/22 +...+1/30 +1/31 +1/32 +...+1/40 >1/3 +1/4
=> 1/21 +1/22 +1/23 +...+1/40 >7/12 (*)
* Ta có : 1/21 <1/20 ;1/22 <1/20 ;...;1/30 <1/20
=> 1/21 +1/22 +...+1/29 +1/30 <1/20 +1/20 +...+1/20 =10/20 =1/2 (3)
1/31 <1/30 ;1/32 <1/30 ;...;1/40 <1/30
=> 1/31 +1/32 +...+1/39 +1/40 <1/30 +1/30 +...+1/30 =10/30 =1/3 (4)
Từ (3) và (4)
=> 1/21 +1/22 +...+1/30 +1/31 +1/32 +...+1/40 <1/2 +1/3
=> 1/21 +1/22 +1/23+...+1/40 <5/6 (**)
Từ (*) và (**) ta có : 7/12 <1/21 +1/22 +1/23 +...+1/40 <5/6 (đpcm)
Bài hơi dài , thông cảm
Ta có : \(\frac{1}{21}>\frac{1}{30};\frac{1}{22}>\frac{1}{30};\frac{1}{23}>\frac{1}{30};...;\frac{1}{29}>\frac{1}{30}\)
\(\Rightarrow A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{29}>\frac{1}{30}+\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\)
\(>\frac{10}{30}=\frac{1}{3}(1)\)
Ta có : \(\frac{1}{31}>\frac{1}{40},\frac{1}{32}>\frac{1}{40},...,\frac{1}{39}>\frac{1}{40}\)
\(\Rightarrow A=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{39}>\frac{1}{40}+\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\)
\(>\frac{10}{40}=\frac{1}{4}(2)\)
Từ 1 và 2 \(\Rightarrow A>\frac{1}{3}+\frac{1}{4}\Rightarrow A>\frac{7}{12}\)
Ta có : \(\frac{1}{21}< \frac{1}{20};\frac{1}{22}< \frac{1}{20};...;\frac{1}{30}< \frac{1}{20}\)
\(\Rightarrow A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{30}< \frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\)
\(< \frac{10}{20}=\frac{1}{2}(3)\)
Ta lại có : ....
Làm tiếp đi :v

\(A=\frac{1}{2}+\frac{1}{12}+...+\frac{1}{9900}>\frac{1}{2}+\frac{1}{12}=\frac{7}{12}\)
\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}=\left(1-\frac{1}{2}+\frac{1}{3}\right)-\left(\frac{1}{4}-\frac{1}{5}\right)-...-\left(\frac{1}{98}-\frac{1}{99}\right)-\frac{1}{100}<\left(1-\frac{1}{2}+\frac{1}{3}\right)=\frac{5}{6}\)
=> điều phải c/m nha
Ta có: A=1/1.2+1/3.4+1/5.6+...+1/99.100
=1-1/2+1/3-1/4+1/5-1/6+...+1/99-1/100
=1+1/2+1/3+1/4+1/5+1/6+...+1/99+1/100-2(1/2+1/4+1/6+...+1/100)
=1+1/2+1/3+1/4+1/5+1/6+...+1/99+1/100-(1+1/2+1/3+1/4+...+1/50)
=1/26+1/27+1/28+...+1/100)
Do đó A=(1/51+1/52+...+1/75)+(1/76+1/77+...+1/100)
Ta có 1/51>1/52>...>1/75 và 1/76>1/77>...>1/100 nên
A>1/75.25+1/100.25=1/3+1/4=7/12
A<1/51.25+1/76.25<1/50.25+1/75.25=1/2+1/3=5/6
Vậy nên 7/12<A<5/6

\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}=\left(1+\frac{1}{3}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right).\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\right)\)\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}-\left(1+\frac{1}{2}+...+\frac{1}{25}\right)=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\)
\(A=\left(\frac{1}{26}+\frac{1}{27}+...+\frac{1}{35}\right)+\left(\frac{1}{36}+...+\frac{1}{50}\right)>\frac{1}{35}.10+\frac{1}{50}.15=\frac{41}{70}>\frac{7}{12}\)
\(A< \frac{10}{26}+\frac{15}{36}< \frac{5}{6}\) Vậy ....

A< \(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+.\ldots+\frac{1}{22.23}\)
A< \(\frac13-\frac14+\frac14-\frac15+\cdots+\frac{1}{22}-\frac{1}{23}\)
A< \(\frac13-\frac{1}{23}\)
A< \(\frac{20}{69}\) < 1 = \(\frac{69}{69}\)
Vậy A < 1
Tick ✔ cho mik nhé! Thnks