K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(B=\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+...+\dfrac{2499}{2500}\)

\(=1-\dfrac{1}{4}+1-\dfrac{1}{9}+...+1-\dfrac{1}{2500}\)

\(=1-\dfrac{1}{2^2}+1-\dfrac{1}{3^2}+...+1-\dfrac{1}{50^2}\)

\(=49-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\right)\)

Ta có: \(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}=1-\dfrac{1}{2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}=\dfrac{1}{2}-\dfrac{1}{3}\)

...

\(\dfrac{1}{50^2}< \dfrac{1}{49\cdot50}=\dfrac{1}{49}-\dfrac{1}{50}\)

Do đó: \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

=>\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}< 1-\dfrac{1}{50}< 1\)

=>\(0< \dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}< 1\)

=>\(0>-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\right)>-1\)

=>\(0+49>-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\right)+49>-1+49\)

=>49>B>48

=>B không là số tự nhiên

10:

n lẻ nên n=2k-1

=>A=1+3+5+7+...+2k-1

Số số hạng là (2k-1-1):2+1=k-1+1=k(số)

Tổng là:

\(\dfrac{\left(2k-1+1\right)\cdot k}{2}=k^2\) là số chính phương(ĐPCM)

4 tháng 9 2023

cảm on haha

18 tháng 5 2022

Gọi 5 số đó là a; b; c; d; e

Giả sử a<b<c<d<e

\(\Rightarrow d-b\ge2;e-c\ge2\)

Theo đề bài 

\(a+b+c>d+e\)

\(\Rightarrow a>b-d+c-e\ge4\Rightarrow a>5\)

 

29 tháng 3 2015

Ta có:

1+2+3+...+2005≡(2005+1).2005:2≡2006.2005:2

 

≡1003.2005≡3.1≡3

(mod 4)

Vậy tổng của các số từ 1 đến 2005 có dạng 4k+3 (kN) nên không là số chính phương (đpcm) 

25 tháng 4 2018

giúp mìn nha