K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4

1,B=6/1.7+6/7.13+6/13.19+...+6/2013.2016

B=1/1-1/7+1/7-1/13+1/13-1/19+...+1/2013-1/2016

B=1-1/2016

B=2015/2016

2, C=8/1.9+8/9.17+8/17.25+...+8/2011.2019

C=1/1-1/9+1/9-1/17+1/17-1/25+....+1/2011-1/2019

C=1-1/2019

C=2018/2019.

18 tháng 4

\(\frac{6}{2013.2016}\)

hạng tử này không theo quy luật dãy phân số em nhé. 2016 - 2013 = 7

7 - 1 = 6

7 khác 6

4 tháng 5 2023

a/\(C=\dfrac{2}{1.7}+\dfrac{2}{7.13}+\dfrac{2}{13.19}+...+\dfrac{2}{1013.1019}\)
\(=\dfrac{1}{3}\left(\dfrac{6}{1.7}+\dfrac{6}{7.13}+\dfrac{6}{13.19}+...+\dfrac{6}{1013.1019}\right)\)
\(=\dfrac{1}{3}\left(1-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{19}+...+\dfrac{1}{1013}-\dfrac{1}{1019}\right)\)
\(=\dfrac{1}{3}\left(1-\dfrac{1}{1019}\right)\)
\(=\dfrac{1}{3}\cdot\dfrac{1018}{1019}\)
\(=\dfrac{1018}{3057}\)
b/\(D=\dfrac{7}{1.9}+\dfrac{7}{9.17}+\dfrac{7}{17.25}+...+\dfrac{7}{2011.2019}\)
\(=\dfrac{7}{8}\left(\dfrac{8}{1.9}+\dfrac{8}{9.17}+\dfrac{8}{17.25}+...+\dfrac{8}{2011.2019}\right)\)
\(=\dfrac{7}{8}\left(1-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{17}+\dfrac{1}{17}-\dfrac{1}{25}+...+\dfrac{1}{2011}-\dfrac{1}{2019}\right)\)
\(=\dfrac{7}{8}\left(1-\dfrac{1}{2019}\right)\)
\(=\dfrac{7}{8}\cdot\dfrac{2018}{2019}\)
\(=\dfrac{7063}{8076}\)

4 tháng 5 2023

Thankyou, Love youyeu

17 tháng 1 2019

Ta có: \(\left(\frac{8}{1.9}+\frac{8}{9.17}+\frac{8}{17.25}+...+\frac{8}{49.57}\right)+2\left(x-1\right)=\frac{2x+7}{3}+\frac{5x-8}{4}\)

\(\Leftrightarrow1-\frac{1}{9}+\frac{1}{9}-\frac{1}{17}+\frac{1}{17}-\frac{1}{25}+....+\frac{1}{49}-\frac{1}{57}+2x-2=\frac{8x+28+15x-24}{12}\)

\(\Leftrightarrow1-\frac{1}{57}+2x-2=\frac{23x+4}{12}\)

\(\Leftrightarrow2x-\frac{58}{57}=\frac{23x+4}{12}\)

\(\Leftrightarrow24x-\frac{232}{19}=23x+4\)

\(\Leftrightarrow x=\frac{308}{19}\)

15 tháng 6 2015

G=6(6/1.7+6/7.13+6/13.19+..+6/n(n+6) )

=6(1-1/7+1/7-1/13+1/13-1/19+....+1/n-1/n+6)

=6(1-n/n+6)

=6.6/n+6

=36/n+6

vậy G=36/n+6

10 tháng 4 2018

Đặt \(A=\frac{5}{1.7}+\frac{5}{7.13}+\frac{5}{13.19}+....+\frac{5}{x.\left(x+6\right)}\)

\(\Rightarrow A=\frac{5}{6}.\left(\frac{6}{1.7}+\frac{6}{7.13}+...+\frac{6}{x.\left(x+6\right)}\right)\)

\(\Rightarrow A=\frac{5}{6}.\left(1-\frac{1}{7}+\frac{1}{7}-\frac{1}{13}+....+\frac{1}{x}-\frac{1}{x+6}\right)\)

\(\Rightarrow A=\frac{5}{6}.\left(1-\frac{1}{x+6}\right)\)

\(\Rightarrow\frac{5}{6}.\frac{x+5}{x+6}=\frac{10075}{12096}\)

Làm nốt nha

10 tháng 4 2018

\(\frac{5}{1.7}+\frac{5}{7.13}+...+\frac{5}{x.\left(x+6\right)}=\frac{10075}{12096}\)

\(\Rightarrow\frac{5}{6}.\left(\frac{6}{1.7}+\frac{6}{7.13}+...+\frac{6}{x.\left(x+6\right)}\right)=\frac{10075}{12096}\)

\(\Rightarrow\frac{5}{6}.\left(1-\frac{1}{7}+\frac{1}{7}-\frac{1}{13}+...+\frac{1}{x}-\frac{1}{x+6}\right)=\frac{10075}{12096}\)

\(\Rightarrow\frac{5}{6}.\left(1-\frac{1}{x+6}\right)=\frac{10075}{12096}\)

\(\Rightarrow1-\frac{1}{x+6}=\frac{10075}{12096}:\frac{5}{6}\)

\(\Rightarrow1-\frac{1}{x+6}=\frac{10075}{12096}.\frac{6}{5}\)

\(\Rightarrow1-\frac{1}{x+6}=\frac{2015}{2016}\)

\(\Rightarrow\frac{1}{x+6}=1-\frac{2015}{2016}\)

\(\Rightarrow\frac{1}{x+6}=\frac{1}{2016}\)

\(\Rightarrow x+6=2016\)

\(\Rightarrow x=2016-6\)

\(\Rightarrow x=2010\)

Chúc bạn học tốt !!! 

a: \(\Leftrightarrow\left(1-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{17}+...+\dfrac{1}{49}-\dfrac{1}{57}\right)+2x-2=\dfrac{2}{3}x+\dfrac{7}{3}+\dfrac{5}{4}x-2\)

\(\Leftrightarrow\dfrac{56}{57}+2x-2=\dfrac{23}{12}x+\dfrac{1}{3}\)

=>1/12x=77/57

=>x=308/19

b: =>(x^2-4)(x^2-10)=72

=>x^4-14x^2+40-72=0

=>x^4-14x^2-32=0

=>(x^2-16)(x^2+2)=0

=>x^2-16=0

=>x^2=16

=>x=4 hoặc x=-4

25 tháng 6 2015

1/7+1/91+1/247+1/475+1/775+1/1147=? (1)
ta có: (1) <=>: 1/(1.7)+1/(7.13)+1/(13.19)+1/(19.25)+1/(25.31)+1/(31.37)
=1/6.(1-1/7+1/7-1/13+1/13-1/19+1/19-1/25+1/25-1/31+1/31-1/37)
=1/6.(1-1/37)=6/37

1 tháng 7 2016

\(\frac{5}{1.7}+\frac{5}{7.13}+\frac{5}{13.19}+...+\frac{5}{2017.2023}\)

\(=5.\frac{1}{6}.\left(\frac{6}{1.7}+\frac{6}{7.13}+\frac{6}{13.19}+...+\frac{6}{2017.2023}\right)\)

\(=\frac{5}{6}.\left(1-\frac{1}{7}+\frac{1}{7}-\frac{1}{13}+\frac{1}{13}-\frac{1}{19}+...+\frac{1}{2017}-\frac{1}{2023}\right)\)

\(=\frac{5}{6}.\left(1-\frac{1}{2023}\right)\)

\(=\frac{5}{6}.\frac{2022}{2023}\)

\(=\frac{1685}{2023}\)

10 tháng 7 2016

\(\frac{5}{1.7}+\frac{5}{7.13}+\frac{5}{13.19}+...+\frac{5}{2017.2023}\)

\(=\frac{5.6}{1.7.6}+\frac{5.6}{7.13.6}+\frac{5.6}{13.19.6}+.....+\frac{5.6}{2017.2023.6}\)

\(=\frac{5}{6}.\left(\frac{6}{1.7}+\frac{6}{7.13}+\frac{6}{13.19}+...+\frac{6}{2017.2023}\right)\)

\(=\frac{5}{6}.\left(1-\frac{1}{7}+\frac{1}{7}-\frac{1}{13}+\frac{1}{13}-\frac{1}{19}+...+\frac{1}{2017}-\frac{1}{2023}\right)\)

\(=\frac{5}{6}.\left(1-\frac{1}{2023}\right)\)

\(=\frac{5}{6}.\frac{2022}{2023}\)

\(=\frac{1685}{2023}\)