Cho tứ giác lồi ABCD. M và K lần lượt là trung điểm của các cạnh BC và AD. AM cắt BK tại H, DM cắt CK tại L. Chứng minh rằng diện tích tứ giác HKLM bằng tổng diện tích của hai tam giác ABH và CDL.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Những câu hỏi liên quan

18 tháng 4 2017
diện tích tam giác CDE là : 130 : [2+3] * 3 = 78 cm 2
diện tích tứ giác ABCE là : 130-78 = 52 cm2
ĐS : CDE : 78 cm2
ABCE : 52 cm2
K mình nha!

20 tháng 4 2015
hiệu số phần bằng nhau là
3 - 2 = 1 ( phần )
diện tích hình tam giác BEC là :
13,6 : 1 x 2 = 27,2 ( cm2 )
diện tích hình tứ giác ABED là :
27,2 + 13,6 = 40,8 ( cm2 )
diện tích hình tứ giác ABCD là :
27,2 + 40,8 = 68 ( cm2 )
ĐS: 68 cm2

17 tháng 8 2021
Tổng số phần của 2 diện tích tam giác :
3 + 2 =5 ( phần )
Diện tích tam giác ACD :
70 : 5 x 3 = 52 ( cm2)
Diện tích tam giác ABC :
70 : 5 x 2 = 28 ( cm2)
Vậy : diện tích tam giác ACD : 52 cm2
______________ ABC : 28 cm2
Lên google tìm đi chị🙏🙏🙏
\(B M = M C \text{v} \overset{ˋ}{\text{a}} A K = K D\)
Ta biết rằng diện tích của một tam giác có thể tính theo công thức:
\(S = \frac{1}{2} \times độ\&\text{nbsp};\text{d} \overset{ˋ}{\text{a}} \text{i}\&\text{nbsp};đ \overset{ˊ}{\text{a}} \text{y} \times \text{chi} \overset{ˋ}{\hat{\text{e}}} \text{u}\&\text{nbsp};\text{cao} .\)
Khi các đường chéo cắt nhau, ta có thể tính diện tích của các tam giác con trong tứ giác thông qua các đoạn thẳng cắt nhau.
Diện tích của các tam giác trong tứ giác:
\(S_{A B H} = \frac{1}{2} \times A B \times h_{A B H} ,\)
trong đó \(h_{A B H}\) là chiều cao từ \(H\) xuống đáy \(A B\).
\(S_{C D L} = \frac{1}{2} \times C D \times h_{C D L} ,\)
trong đó \(h_{C D L}\) là chiều cao từ \(L\) xuống đáy \(C D\).
Tổng diện tích của tứ giác \(H K L M\) có thể được chia thành diện tích của các tam giác nhỏ:
\(S_{H K L M} = S_{A B H} + S_{C D L} .\)Do đó, ta đã chứng minh rằng diện tích của tứ giác \(H K L M\) bằng tổng diện tích của hai tam giác \(A B H\) và \(C D L\), như yêu cầu.
Kết luận:
Diện tích tứ giác \(H K L M\) bằng tổng diện tích của hai tam giác \(A B H\) và \(C D L\).