\(\frac{x-1}{2022}+\frac{x-5}{2018}=\frac{x-2011}{12}+\frac{x-10}{2013}\)
Giúp mình với plsss
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{x-90}{10}+\frac{x-76}{12}+\frac{x-58}{14}+\frac{x-36}{16}+\frac{x-15}{17}=15\)
\(\Leftrightarrow\frac{x-90}{10}-1+\frac{x-76}{12}-2+\frac{x-58}{14}-3+\frac{x-36}{16}-4+\frac{x-1}{17}-5=0\)
\(\Leftrightarrow\frac{x-90-10}{10}+\frac{x-76-2.12}{12}+\frac{x-58-3.14}{14}+\frac{x-36-4.16}{16}+\frac{x-15-5.17}{17}=0\)
\(\Leftrightarrow\frac{x-100}{10}+\frac{x-100}{12}+\frac{x-100}{14}+\frac{x-100}{16}+\frac{x-100}{17}=0\)
\(\Leftrightarrow\left(x-100\right)\left(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\right)=0\)
\(\Leftrightarrow x-100=0\Leftrightarrow x=100\)
Vậy \(S=\left\{100\right\}\)
b) \(\frac{x+2011}{2013}+\frac{x+2012}{2012}=\frac{x+2010}{2014}+\frac{x+2013}{2011}\)
\(\Leftrightarrow\frac{x+2011}{2013}+1+\frac{x+2012}{2012}+1=\frac{x+2010}{2014}+1+\frac{x+2013}{2011}+1\)
\(\Leftrightarrow\frac{x+2011+2013}{2013}+\frac{x+2012+2012}{2012}=\frac{x+2010+2014}{2014}+\frac{x+2013+2011}{2011}\)
\(\Leftrightarrow\frac{x+4024}{2013}+\frac{x+4024}{2012}-\frac{x+4024}{2014}-\frac{x+4024}{2011}=0\)
\(\Leftrightarrow\left(x+4024\right)\left(\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2014}-\frac{1}{2011}\right)=0\)
\(\Leftrightarrow x+4024=0\Leftrightarrow x=-4024\)
Vậy \(S=\left\{-4024\right\}\)
Phương trình a bạn trừ phân thức đầu tiên cho 1, phân thức thứ hai cho 2, phân thức thứ ba cho 3, phân thức thứ tư cho 4, phân thức thứ năm cho 5, vế còn lại trừ đi 15. Tiếp theo bạn đặt x -100 làm nhân tử chung. Cuối cùng tìm được x= 100
Ta có:\(\frac{x-1}{2013}+\frac{x-2}{2012}=\frac{x-3}{2011}+\frac{x-4}{2010}\)
\(\Rightarrow\left(\frac{x-1}{2013}-1\right)+\left(\frac{x-2}{2012}-1\right)=\left(\frac{x-3}{2011}-1\right)+\left(\frac{x-4}{2010}-1\right)\)
\(\Rightarrow\frac{x-2014}{2013}+\frac{x-2014}{2012}=\frac{x-2014}{2011}+\frac{x-2014}{2010}\)
\(\Rightarrow\frac{x-2014}{2013}+\frac{x-2014}{2012}-\frac{x-2014}{2011}-\frac{x-2014}{2010}=0\)
\(\Rightarrow\left(x-2014\right).\left(\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2011}-\frac{1}{2010}\right)=0\)
Vì \(\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2011}-\frac{1}{2010}\ne0\)nên để biểu thức =0
\(\Leftrightarrow x-2014=0\Rightarrow x=2014\)
Ta cTa có: 2013 x − 1 + 2012 x − 2 = 2011 x − 3 + 2010 x − 4 ⇒ 2013 x − 1 − 1 + 2012 x − 2 − 1 = 2011 x − 3 − 1 + 2010 x − 4 − 1 ⇒ 2013 x − 2014 + 2012 x − 2014 = 2011 x − 2014 + 2010 x − 2014 ⇒ 2013 x − 2014 + 2012 x − 2014 − 2011 x − 2014 − 2010 x − 2014 = 0 ⇒ x − 2014 . 2013 1 + 2012 1 − 2011 1 − 2010 1 = 0
1 = 0
chúc bn hok tốt @_@
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x.\left(x+1\right)}=\frac{2011}{2013}\)
\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x.\left(x+1\right)}=\frac{2011}{2013}\)
\(\Rightarrow\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{x\left(x+1\right)}=\frac{2011}{2013}\)
\(\Rightarrow2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)
\(\Rightarrow2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2011}{2013}:2\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2011}{4026}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2011}{4026}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2013}\)
\(\Rightarrow x+1=2013\)
\(\Rightarrow x=2013-1\)
\(\Rightarrow x=2012\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x.\left(x+1\right)}=\frac{2011}{2013}\)
\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x.\left(x+1\right)}=\frac{2011}{2013}\) (1/3=2/6;...)
\(\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{x.\left(x+1\right)}=\frac{2011}{2013}\)
\(2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)
\(2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)
\(1-\frac{2}{x+1}=\frac{2011}{2013}\)
\(\frac{2}{x+1}=\frac{2}{2013}\)
=> x + 1 = 2013
x = 2012
\(\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x.\left(x+1\right)}=\frac{2011}{2013}\)
\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2011}{2013}:2\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{2011}{4026}\)
\(\frac{\left(x+1-2\right)}{2.\left(x+1\right)}=\frac{2011}{4026}\)
Cái này lớp 6 :
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+......+\frac{2}{x\left(x+1\right)}=\frac{2011}{2013}\)
\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{x\left(x+1\right)}=\frac{2011}{2013}\)
\(\Leftrightarrow\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+....+\frac{2}{x\left(x+1\right)}=\frac{2011}{2013}\)
\(\Leftrightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{x\left(x+1\right)}\right)=\frac{2011}{2013}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)
<=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{2011}{4026}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2011}{4026}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{2}{4026}=\frac{1}{2013}\)
\(\Leftrightarrow x+1=2013\)
=> x = 2012
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2011}{2013}\)
\(\Rightarrow2.\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2011}{2013}\)
\(\Rightarrow2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2011}{2013}\)
\(\Rightarrow2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)
\(\Rightarrow2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)
\(\Rightarrow1-\frac{2}{x+1}=\frac{2011}{2013}\)
\(\Rightarrow\frac{2}{x+1}=1-\frac{2011}{2013}\)
\(\Rightarrow\frac{2}{x+1}=\frac{2}{2013}\)
\(\Rightarrow x+1=2013\)
\(\Rightarrow x=2013-1\)
\(\Rightarrow x=2012\)
Vậy \(x=2012\)
~ Ủng hộ nhé
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2011}{2013}\)
\(\Leftrightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2011}{2013}\)
\(\Leftrightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2011}{2013}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)
\(\Leftrightarrow1-\frac{2}{x+1}=\frac{2011}{2013}\)
\(\Leftrightarrow\frac{2}{x+1}=\frac{2}{2013}\)
\(\Leftrightarrow x+1=2013\)
\(\Leftrightarrow x=2012\)
Vậy \(x=2012\)
\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.........+\frac{2}{x\left(x+1\right)}=1\frac{2003}{2005}\left(1\right)\)
\(=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+......+\frac{2}{x\left(x+1\right)}\)
\(=2.\left[\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+........+\frac{1}{x\left(x+1\right)}\right]\)
\(=2.\left[1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.......+\frac{1}{x}-\frac{1}{x+1}\right]\)
\(=2.\left(1-\frac{1}{x+1}\right)\)
\(=2.\left(\frac{x+1}{x+1}-\frac{1}{x+1}\right)\)
\(=2.\frac{x}{x+1}\)
Thay vào ( 1 ) ta có :
\(\frac{2x}{x+1}=\frac{4008}{2005}\Rightarrow\frac{x}{x+1}=\frac{2004}{2005}\)
\(\Rightarrow2005x=2004\left(x+1\right)\Rightarrow2005x=2004.2004\)
\(\Rightarrow2005x=2004x=2004x\Rightarrow x=2004\)
KL : Vậy x = 2004
Đây là bài mẫu của mình bạn dựa theo rồi tự làm nhé
Ta có: \(\dfrac{x-1}{2022}+\dfrac{x-5}{2018}=\dfrac{x-2011}{12}+\dfrac{x-10}{2013}\)
=>\(\left(\dfrac{x-1}{2022}-1\right)+\left(\dfrac{x-5}{2018}-1\right)=\left(\dfrac{x-2011}{12}-1\right)+\left(\dfrac{x-10}{2013}-1\right)\)
=>\(\dfrac{x-2023}{2022}+\dfrac{x-2023}{2018}=\dfrac{x-2023}{12}+\dfrac{x-2023}{2013}\)
=>\(\left(x-2023\right)\left(\dfrac{1}{2022}+\dfrac{1}{2018}-\dfrac{1}{12}-\dfrac{1}{2013}\right)=0\)
=>x-2023=0
=>x=2023
0