K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

VM
11 tháng 4

1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 = 32/64 + 16/64 + 8/64 + 4/64 + 2/64 + 1/64 = 63/64

11 tháng 4

A = \(\frac12\) + \(\frac14\) + \(\frac18\) + \(\frac{1}{16}\) + \(\frac{1}{32}\) + \(\frac{1}{64}\)

2 x A = 1 + \(\frac12\) + \(\frac14\) + \(\frac18\) + \(\frac{1}{16}\) + \(\frac{1}{32}\)

2 x A - A = 1 + \(\frac12\) + \(\frac14\) + \(\frac18\) + \(\frac{1}{16}\) + \(\frac{1}{32}\) - \(\frac12\) - \(\frac14\) - \(\frac18\) - \(\frac{1}{16}\) - \(\frac{1}{32}\) - \(\frac{1}{64}\)

A x (2 - 1) = (1 - \(\frac{1}{64}\))+(\(\frac12\)-\(\frac12\))+(\(\frac14\)-\(\frac14\))+(\(\frac18\)-\(\frac18\))+(\(\frac{1}{16}\)-\(\frac{1}{16}\))+(\(\frac{1}{32}\) -\(\frac{1}{32}\))

A = \(\frac{63}{64}\) + 0 + 0 +..+0

A = \(\frac{63}{64}\)

21 tháng 8 2016

Ta có  (2-1)(2+ 1) = 2- 1 

(2- 1)(22 + 1) = 2- 1 

tương tự như vậy ta sẽ có (2 -1)A = 232 - 1 

vậy A < 232

AH
Akai Haruma
Giáo viên
20 tháng 8 2023

Lời giải:

$A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}$

$\Rightarrow 2A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}$

$\Rightarrow A=2A-A=1-\frac{1}{32}< 1-\frac{1}{2004}$

Hay $A< \frac{2003}{2004}$

Hay $A< B$

14 tháng 4

Câu a:

A = \(\frac{1}{2\times3}\) + \(\frac{1}{3\times4}\) + \(\frac{1}{4\times5}\) + \(\frac{1}{5\times6}\) + \(\frac{1}{6\times7}\) + \(\frac{1}{7\times8}\)

A = \(\frac12-\frac13\) + \(\frac13-\frac14\) + \(\frac14-\frac15\) + \(\frac15-\frac16\) + \(\frac16-\frac17\) + \(\frac17-\frac18\)

A = \(\frac12-\frac18\)

A = \(\frac38\)

14 tháng 4

Câu b:

A = \(\frac12\) + \(\frac14\) + \(\frac18\) + \(\frac{1}{16}\) + \(\frac{1}{32}\) + \(\frac{1}{64}\) + \(\frac{1}{128}\) + \(\frac{1}{256}\)

2 x A = 1 + \(\frac12\) + \(\frac14\) + \(\frac18\) + \(\frac{1}{16}\) + \(\frac{1}{32}\) + \(\frac{1}{64}\) + \(\frac{1}{128}\)

2 x A - A = 1 + \(\frac12\) +\(\frac14\) + \(\frac18\) + \(\frac{1}{16}\) + \(\frac{1}{32}\) + \(\frac{1}{64}\) + \(\frac{1}{128}\) - \(\frac12-\frac14\) -...-\(\frac{1}{128}\) -\(\frac{1}{256}\)

A x (2 - 1) = (1 - \(\frac{1}{256}\)) + (\(\frac12\)-\(\frac12\)) +...+(\(\frac{1}{128}\) - \(\frac{1}{128}\))

A = 1 - \(\frac{1}{256}\) + 0 + 0+...+ 0

A = \(\frac{255}{256}\)

\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\)

\(=\frac{16}{32}+\frac{8}{32}+\frac{4}{32}+\frac{2}{32}+\frac{1}{32}\)

\(=\frac{31}{32}\)

b: A=1/3+1/9+...+1/3^10

=>3A=1+1/3+...+1/3^9

=>A*2=1-1/3^10=(3^10-1)/3^10

=>A=(3^10-1)/(2*3^10)

c: C=3/2+3/8+3/32+3/128+3/512

=>4C=6+3/2+...+3/128

=>3C=6-3/512

=>C=1023/512

d: A=1/2+...+1/256

=>2A=1+1/2+...+1/128

=>A=1-1/256=255/256

Đặt A=1/2+1/4+...+1/128

=1/2+(1/2)^2+...+(1/2)^7

=>2A=1+1/2+...+(1/2)^6

=>2A-A=1+1/2+...+(1/2)^6-1/2-1/4-...-1/128

=>A=1-1/128=127/128

18 tháng 6 2016

Đặt \(A=12.\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(2A=\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(=\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(=\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(=\left(5^{16}-1\right)\left(5^{16}+1\right)\)

\(=5^{32}-1\)

Vậy \(A=\frac{5^{32}-1}{2}\)

18 tháng 6 2016

\(\frac{12.\left(5^2+1\right)\left(5^2-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{5^2-1}\)

=\(\frac{12.\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{24}\)

=\(\frac{\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{2}\)

=\(\frac{\left(5^{16}-1\right)\left(5^{16+1}\right)}{2}\)

=\(\frac{5^{32}-1}{2}\)

14 tháng 9 2021

\(\frac{16}{32}\)\(+\frac{8}{32}\)\(+\frac{4}{32}\)\(+\frac{2}{32}\)\(+\frac{1}{32}\)

\(=\frac{31}{32}\)

14 tháng 9 2021

\(C2:\)\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+....+\frac{1}{16}-\frac{1}{32}\)

\(=1-\frac{1}{32}\)\(=\frac{31}{32}\)

29 tháng 5 2023

A =             1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\)\(\dfrac{1}{16}\) + \(\dfrac{1}{32}\)\(\dfrac{1}{64}\)\(\dfrac{1}{128}\)

A\(\times\)2 = 2 + 1 + \(\dfrac{1}{2}\) +  \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) + \(\dfrac{1}{32}\) + \(\dfrac{1}{64}\)

\(\times\) 2 - A = 2 - \(\dfrac{1}{128}\)

\(\times\)( 2-1) = \(\dfrac{255}{128}\)

A = \(\dfrac{255}{128}\)

29 tháng 5 2023

Gọi \(1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}+\dfrac{1}{128}\) là T

\(T=1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}+\dfrac{1}{128}\)

\(2T=2+1+\dfrac{1}{2}+\dfrac{1}{4}+....+\dfrac{1}{64}\)

\(2T-T=\left(2+1+\dfrac{1}{2}+\dfrac{1}{4}+....+\dfrac{1}{64}\right)-\left(1+\dfrac{1}{2}+....+\dfrac{1}{64}+\dfrac{1}{128}\right)\)

\(T=2+\left(1-1\right)+\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+....+\left(\dfrac{1}{64}-\dfrac{1}{64}\right)-\dfrac{1}{128}\)

\(T=2+0+0+...-\dfrac{1}{128}\)

\(T=\dfrac{256}{128}-\dfrac{1}{128}\)

\(T=\dfrac{255}{128}\)

1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64

= 32/64 + 16/64 + 8/64 + 4/64 + 2/64 + 1/64

= 63/64.

Chúc bn học tốt!!!

11 tháng 7 2020

Tính bằng cách thuận tiện 

\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+\frac{1}{16}-\frac{1}{32}+\frac{1}{32}-\frac{1}{64}\)

\(=1-\frac{1}{64}\)

\(=\frac{63}{64}\)

Chúc bạn học tốt