\(P=\frac{6x}{2x-1}\) , tìm các giá trị của x để P = 2
Cần gấp ạ!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A có nghĩa \(\Leftrightarrow\left(x+1\right)^2-3x\ne0\), \(x^3+1\ne0\),\(x+1\ne0\),\(3x^2+6x\ne0\) và \(x^2-4\ne0\)
+) \(\left(x+1\right)^2-3x\ne0\Leftrightarrow x^2+2x+1-3x\ne0\)
\(\Leftrightarrow x^2-x+1\ne0\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ne0\)(luôn đúng)
+) \(x^3+1\ne0\Leftrightarrow x^3\ne-1\Leftrightarrow x\ne-1\)
+) \(x+1\ne0\Leftrightarrow x\ne-1\)
+) \(3x^2+6x\ne0\Leftrightarrow3x\left(x+2\right)\ne0\)
\(\Leftrightarrow x\ne0;x\ne-2\)
+) \(x^2-4\ne0\Leftrightarrow x^2\ne4\Leftrightarrow x\ne\pm2\)
Vậy ĐKXĐ của A là \(x\ne-1;x\ne0;x\ne\pm2\)
a, \(Đkxđ:\hept{\begin{cases}x\ne-1\\x\ne0\\x\ne-2\end{cases}}\)
\(A=\left[\frac{\left(x+1\right)^2}{\left(x+1\right)^2-3x}-\frac{2x^2+4x-1}{x^3+1}-\frac{1}{x+1}\right]:\frac{x^2-4}{3x^2+6x}\)
\(=\left[\frac{x^2+2x+1}{x^2-x+1}-\frac{2x^2+4x-1}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{1}{x+1}\right].\frac{3x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{\left(x^2+2x+1\right)\left(x+1\right)-2x^2-4x+1-\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{3x}{x-2}\)
\(=\frac{x^3+1}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{3x}{x-2}\)
\(=\frac{3x}{x-2}=3+\frac{6}{x-2}\)
b, Để A nguyên thì \(\Leftrightarrow6\)chia hết cho \(x-2\)
Hay \(\left(x-2\right)\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
x-2 | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
x | -4 | -1 | 0 | 1 | 3 | 4 | 5 | 8 |
Vậy ............................
1. Cho bt P= (1/√x+2 + 1/√x-2 ) . √x-2/√x với x>0, x khác 4
a) rút gọn P
b) tìm x để P>1/3
c) tìm các giá trị thực của x để Q=9/2P có giá trị nguyên
2. Cho 2 biểu thức
A= 1-√x / 1+√ x và B= ( 15-√x/ x-25 + 2/√x+5) : √x+1/√ x-5 với x lớn hơn hoặc bằng 0, x khác 25
a) tính giá trị của A khi x= 6-2√5
b) rút gọn B
c) tìm a để pt A-B=a có nghiệm
chúc bạn học tốt
Bài 1 :
\(a,P=\left(\frac{x}{x^2-36}-\frac{x-6}{x^2+6x}\right):\frac{2x-6}{x^2+6x}=\left[\frac{x}{\left(x+6\right)\left(x-6\right)}-\frac{x-6}{x\left(x+6\right)}\right]:\frac{2x-6}{x\left(x+6\right)}\)
\(=\frac{x^2-\left(x-6\right)^2}{x\left(x+6\right)\left(x-6\right)}.\frac{x\left(x+6\right)}{2x-6}=\frac{6\left(2x-6\right)}{x\left(x+6\right)\left(x-6\right)}.\frac{x\left(x+6\right)}{2x-6}\)
\(=\frac{6}{x-6}\)
\(b,\)Với \(x\ne-6;x\ne6;x\ne0;x\ne3\) Thì
\(P=1\Rightarrow\frac{6}{X-6}=1\Rightarrow6=x-6\Rightarrow x=12\)(Thỏa mãn \(ĐKXĐ\))
\(c,\)Ta có :
\(P< 0\Rightarrow\frac{6}{X-6}< 0\Rightarrow X-6< 0\Rightarrow X< 6\)
Do : \(x\ne-6;x\ne6;x\ne0;x\ne3\) ,Nên với \(x< 6\)và \(x\ne-6;x\ne0;x\ne3\) thì \(P< 0\)
ĐỂ BIỂU THỨC \(A=\frac{6x-4}{2x+1}\)NHẬN GIÁ TRỊ NGUYÊN
TA CÓ: \(A=\frac{6x-4}{2x+1}=\frac{6x+3-7}{2x+1}=\frac{3.\left(2x+1\right)-7}{2x+1}\)
\(=\frac{3.\left(2x+1\right)}{2x+1}-\frac{7}{2x+1}=3-\frac{7}{2x+1}\)
ĐỂ \(A\inℤ\)
\(\Rightarrow\frac{7}{2x+1}\inℤ\)
\(\Rightarrow7⋮2x+1\)
\(\Rightarrow2x+1\inƯ_{\left(7\right)}=\left(1;-1;7;-7\right)\)
NẾU \(2x+1=1\Rightarrow2x=0\Rightarrow x=0\left(TM\right)\)
\(2x+1=-1\Rightarrow2x=-2\Rightarrow x=-1\left(TM\right)\)
\(2x+1=7\Rightarrow2x=6\Rightarrow x=3\left(TM\right)\)
\(2x+1=-7\Rightarrow2x=-8\Rightarrow x=-4\left(TM\right)\)
VẬY X = ....................
CHÚC BN HỌC TỐT!!!!!!
Ta có :
\(A=\frac{6x-4}{2x+1}=\frac{6x+3-7}{2x+1}=\frac{3\left(2x+1\right)}{2x+1}-\frac{7}{2x+1}=3-\frac{7}{2x+1}\)
Để A là số nguyên hay nói cách khác thì \(7⋮\left(2n+1\right)\)\(\Rightarrow\)\(\left(2n+1\right)\inƯ\left(7\right)\)
Mà \(Ư\left(7\right)=\left\{1;-1;7;-7\right\}\)
Suy ra :
\(2x+1\) | \(1\) | \(-1\) | \(7\) | \(-7\) |
\(x\) | \(0\) | \(-1\) | \(3\) | \(-4\) |
Vậy \(x\in\left\{-4;-1;0;3\right\}\)
Chúc bạn học tốt ~
Điều kiên:2x+1 khác 0 nên x khác -1/2. Ta có: A=\(\frac{6x+3-7}{2x+1}=3+\frac{7}{2x+1}\) rồi suy ra 2x+1= 7, -7, 1, -1. Vậy x=3,-4,0,-1.
P = \(\frac{6x}{2x-1}\)
P = 2 ⇔ \(\frac{6x}{2x-1}\) = 2(đk \(x\) ≠ \(\frac12\))
6\(x\) = (2\(x\) - 1).2
6\(x\) = 4\(x\) - 2
6\(x\) - 4\(x\) = - 2
2\(x\) = -2
\(x=-2:2\)
\(x=-1\)
Vậy \(x=-1\) thì P = 2
x=-1