K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4

Ko dc nhá

Trong toán học, "1 + 1 = 3" là một câu sai vì theo định lý cơ bản của phép cộng, 1 + 1 luôn bằng 2. Tuy nhiên, nếu bạn muốn thử chứng minh "1 + 1 = 3" trong một ngữ cảnh phi lý hoặc một trò đùa, thì có thể thực hiện một số phép toán "sai" để đưa đến kết quả như vậy. Ví dụ, một số người sẽ dùng những phép toán "không hợp lệ" hoặc "mơ hồ" để chứng minh điều này.

Ví dụ một cách "giả" để chứng minh:

  1. Giả sử ta có:
    \(a = b\)
  2. Nhân cả hai vế với \(a\), ta có:
    \(a^{2} = a b\)
  3. Trừ \(b^{2}\) từ cả hai vế:
    \(a^{2} - b^{2} = a b - b^{2}\)
  4. Phân tích các vế:
    \(\left(\right. a + b \left.\right) \left(\right. a - b \left.\right) = b \left(\right. a - b \left.\right)\)
  5. Chia cả hai vế cho \(\left(\right. a - b \left.\right)\) (nhưng nhớ rằng \(a = b\), nên \(a - b = 0\), việc chia cho 0 là không hợp lệ, nhưng ta sẽ tiếp tục để thấy được sai sót):
    \(a + b = b\)
  6. Thay vào ta có:
    \(2 b = b\)
  7. Nếu chia cho \(b\), ta sẽ được:
    \(2 = 1\)

Và từ đó có thể dẫn đến các kết luận sai lệch như "1 + 1 = 3".

Tất nhiên, đây là một cách "chứng minh" phi lý và không đúng trong toán học thực tế. Chứng minh này chỉ cho thấy sự sai sót khi thực hiện phép chia cho 0, điều mà trong toán học là không hợp lệ!

23 tháng 2 2021

1/ \(3-4\sin^2=4\cos^2x-1\Leftrightarrow4\left(\sin^2x+\cos^2x\right)-4=0\Leftrightarrow4.1-4=0\left(ld\right)\Rightarrow dpcm\)

2/ \(\cos^4x-\sin^4x=\left(\cos^2x+\sin^2x\right)\left(\cos^2x-\sin^2x\right)=\cos^2x-\left(1-\cos^2x\right)=2\cos^2x-1=\left(1-\sin^2x\right)-\sin^2x=1-2\sin^2x\)

3/ \(\sin^4x+\cos^4x=\left(\sin^2x+\cos^2x\right)^2-2\sin^2x.\cos^2x=1-2\sin^2x.\cos^2x\)

23 tháng 5 2022

\(A=\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{3}\right)^2+\left(\dfrac{1}{4}\right)^2+...+\left(\dfrac{1}{2013}\right)^2\)

\(A=\left(\dfrac{1}{2+3+4+...+2013}\right)^2\)

\(A=\left(\dfrac{1}{\left(2013-2\right)+1}\right)^2\)

\(A=\left(\dfrac{1}{2012}\right)^2\)

\(A=\dfrac{1}{2012\cdot2012}\)

\(\Rightarrow A=\dfrac{1}{2012}< \dfrac{3}{4}\)

a: \(\dfrac{a}{b}+\dfrac{b}{a}>=2\cdot\sqrt{\dfrac{a}{b}\cdot\dfrac{b}{a}}=2\)

b: a<b

=>-2a>-2b

=>-2a-3>-2b-3

c: =x^2+2xy+y^2+y^2+6y+9

=(x+y)^2+(y+3)^2>=0 với mọi x,y

d: a+3>b+3

=>a>b

=>-5a<-5b

=>-5a+1<-5b+1

14 tháng 8 2023

1.

a.\(A=1+2^1+2^2+2^3+...+2^{2007}\)

\(2A=2+2^2+2^3+....+2^{2008}\)

b. \(A=\left(2+2^2+2^3+...+2^{2008}\right)-\left(1+2^1+2^2+..+2^{2007}\right)\)

\(=2^{2008}-1\) (bạn xem lại đề)

 

2.

\(A=1+3+3^1+3^2+...+3^7\)

a. \(2A=2+2.3+2.3^2+...+2.3^7\)

b.\(3A=3+3^2+3^3+...+3^8\)

\(2A=3^8-1\)

\(=>A=\dfrac{2^8-1}{2}\)

 

3

.\(B=1+3+3^2+..+3^{2006}\)

a. \(3B=3+3^2+3^3+...+3^{2007}\)

b. \(3B-B=2^{2007}-1\)

\(B=\dfrac{2^{2007}-1}{2}\)

 

4.

Sửa: \(C=1+4+4^2+4^3+4^4+4^5+4^6\)

a.\(4C=4+4^2+4^3+4^4+4^5+4^6+4^7\)

b.\(4C-C=4^7-1\)

\(C=\dfrac{4^7-1}{3}\)

 

5.

\(S=1+2+2^2+2^3+...+2^{2017}\)

\(2S=2+2^2+2^3+2^4+...+2^{2018}\)

\(S=2^{2018}-1\)

4:

a:Sửa đề: C=1+4+4^2+4^3+4^4+4^5+4^6

=>4*C=4+4^2+...+4^7

b: 4*C=4+4^2+...+4^7

C=1+4+...+4^6

=>3C=4^7-1

=>\(C=\dfrac{4^7-1}{3}\)

5:

2S=2+2^2+2^3+...+2^2018

=>2S-S=2^2018-1

=>S=2^2018-1

1 tháng 9 2018

ai nhanh mình k

5 tháng 5 2021

1 /2 -1 /4 + 1 /8-1 /16 + 1 /32-1 /64 < 1 /3

Cách 1:21/64 < 1/3

Cách 2:21/64 < 0.(3)

Đúng

1 /2 + 1 /4 + 1 /8 + 1 /16 + 1 /32 + 1 /64 < 1 /3

Cách 2:63/64 < 0.(3)

Ko đúng

Câu 3 mình ko biết

26 tháng 8 2015

Bài 1. Ta chứng minh \(A=10^{150}+5\cdot10^5+1\) không là số lập phương. 

Bổ đề. Một số lập phương không âm bất kì chia cho 9 chỉ có thể dư là 0,1 hoặc 8.

Chứng minh. Xét \(x\) là số tự nhiên bất kì. Nếu \(x\) chia hết cho 3  thì \(x^3\)  hiển nhiên chia hết cho 9 nên số dư chia cho 9 bằng 0.

Nếu \(x\) chia hết 3 dư là 1 thì \(x=3k+1\to x^3=\left(3k+1\right)^3=27k^3+27k^2+9k+1\) chia 9 có số dư là 1.

Nếu \(x\) chia hết 3 dư là 1 thì \(x=3k+2\to x^3=\left(3k+2\right)^3=27k^3+54k^2+18k+8\) chia 9 có số dư là 8.

Quay trở lại bài toán, ta thấy \(10\) chia 9 dư 1 nên \(A\) chia 9 dư là \(1+5+1=7\to\)\(A\) không thể là lập phương của số tự nhiên.

Bài 2. Ta chứng minh bài toán bằng quy nạp. Với n=****. Giả sử đúng đến n, thức là ta đã có \(1^3+2^3+\cdots+n^3=\left(1+2+\cdots+n\right)^2.\)

Khi đó \(1^3+2^3+\cdots+n^3+\left(n+1\right)^3=\left(1+2+\cdots+n\right)^2+\left(n+1\right)^3\)

\(=\frac{n^2\left(n+1\right)^2}{4}+\left(n+1\right)^3=\left(n+1\right)^2\cdot\frac{n^2+4n+4}{4}=\frac{\left(n+1\right)^2\left(n+2\right)^2}{4}.\)

Do đó ta có \(1^3+2^3+\cdots+\left(n+1\right)^3=\frac{\left(n+1\right)^2\left(n+2\right)^2}{4}=\left(1+2+\cdots+n+\left(n+1\right)\right)^2\)

3 tháng 9 2017

a>

\(\frac{1}{2^2}+\frac{1}{100^2}\)=1/4+1/10000

ta có 1/4<1/2(vì 2 đề bài muốn chứng minh tổng đó nhỏ 1 thì chúng ta phải xét xem có bao nhiêu lũy thừa hoặc sht thì ta sẽ lấy 1 : cho số số hạng )

1/100^2<1/2

=>A<1