chứng minh định lí cạnh đối diện với góc lớn hơn là cạnh lớn hơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) Xét hai tam giác ABD và AED: AB = AE, AD chung, \(\widehat {BAD} = \widehat {EAD}\)(AD là phân giác của góc BAC).
Vậy \(\Delta ABD = \Delta AED\) (c.g.c)
b) Ta có: \(\Delta ABD = \Delta AED \Rightarrow \widehat {ABD} = \widehat {AED}\) (2 góc tương ứng)
Ba điểm A, E, C thẳng hàng nên \(\widehat {AED} = 180^\circ \).
Vậy \(\widehat {ABD} = \widehat {AED} = 180^\circ - \widehat {DEC} = \widehat {EDC} + \widehat {ECD}\)(Tổng ba góc trong tam giác EDC bằng 180°).
Do đó, góc B bằng tổng của góc EDC và góc C. Vậy \(\widehat B > \widehat C\).

Nếu AB > AC thì ∠C > ∠B (góc đối diện với cạnh lớn hơn là góc lớn hơn)
Điều này trái với giả thiết ∠B > ∠C nên không xảy ra.

Nếu AB = AC thì ΔABC cân tại A
⇒ ∠B = ∠C(tính chất tam giác cân)
Điều này trái với giả thiết ∠B > ∠C nên không xảy ra.
Vậy nếu ∠B > ∠C thì AC > AB.

T làm, sai đâu sửa hộ nhé
A B C
Giả sử có tam giác ABC có góc B > góc C => AC < AB
Ta xét 2 trường hợp:
TH1: Nếu AB > AC thì góc B < góc C (góc đối diện với cạnh lớn hơn là góc lớn hơn)
Điều này trái với giả thuyết góc B > góc C
TH2: Nếu AB = AC thì tam giác ABC cân tại A
=> Góc B = góc C (tính chất của tam giác cân)
Điều này trái với giả thuyết góc B > góc C
Vậy: Góc B > góc C => AC < AB (đpcm)
Chứng minh:
Giả sử có tam giác ABC với các góc A, B, C và các cạnh đối diện lần lượt là a, b, c. Ta giả sử rằng góc A lớn hơn góc B, tức là \(\angle A > \angle B\).
Cách 1: Dùng bất đẳng thức tam giác và hình học
\(a > b\)
Kết luận:
Ta đã chứng minh rằng trong tam giác, nếu một góc lớn hơn một góc khác, thì cạnh đối diện với góc lớn hơn sẽ lớn hơn cạnh đối diện với góc nhỏ hơn.
Điều này chứng tỏ định lý "Cạnh đối diện với góc lớn hơn thì lớn hơn".