x+2y+3z=92x−y+4z=83x+4y−z=3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Mình làm một câu để bạn tham khảo, sau đó bạn áp dụng làm các bài còn lại nha ^^
Có gì không hiểu bạn ib nha ^^
1. \(2x=3y-2x\left(1\right)\) và \(x+y=14\)
\(\left(1\right)\Leftrightarrow4x=3y\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}\)
Theo tính chất dãy tỉ số bằng nhau, có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{14}{7}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.4=8\end{matrix}\right.\)
Bạn tự kết luận ^^

3: 10x=6y=5z
\(\Leftrightarrow\dfrac{10x}{30}=\dfrac{6y}{30}=\dfrac{5z}{30}\)
hay x/3=y/5=z/6
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}=\dfrac{x+y-z}{3+5-6}=\dfrac{24}{2}=12\)
Do đó: x=36; y=60; z=72
4: Ta có: 9x=3y=2z
nên \(\dfrac{9x}{18}=\dfrac{3y}{18}=\dfrac{2z}{18}\)
hay x/2=y/6=z/9
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{6}=\dfrac{z}{9}=\dfrac{x-y+z}{2-6+9}=\dfrac{50}{5}=10\)
Do đó: x=20; y=60; z=90

\(a,4x=5y\:\Rightarrow\frac{x}{5}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{12}\)
\(4y=6z\Rightarrow\frac{y}{6}=\frac{z}{4}\Rightarrow\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{x}{15}=\frac{2y}{24}=\frac{3z}{24}\)
\(\Rightarrow\frac{x-2y+3z}{15-24+24}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{5}{15}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{1}{3}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1}{3}\cdot15=5\\y=\frac{1}{3}\cdot12=4\\z=\frac{1}{3}\cdot8=\frac{8}{3}\end{cases}}\)

Đưa hệ phương trình về hệ dạng tam giác bằng cách khử dần ẩn số.
Nhân phương trình (1) với 2 rồi cộng với phương trình (2) và nhân phương trình (1) với (3) rồi trừ đi phương trình (3) ta được:
Giải hệ phương trình trên ta được
Vậy hệ phương trình có nghiệm

+) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
=> \(\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{16}=4\end{cases}}\) => \(\hept{\begin{cases}x^2=4.9=36\\y^2=4.16=64\end{cases}}\) => \(\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)
Vậy ...

Đề câu g có vấn đề aa :>>>
Câu còn lại tương tự như trên mà

a, Bạn nghi sai đề: bài này mình làm rồi nên biết chỗ sai, nếu bạn nghi đúng đề thì mình làm sau nhé
\(\dfrac{2x-4y}{3}=\dfrac{4z-3x}{2}=\dfrac{3y-2z}{4}\)
=\(\dfrac{6x-12y}{9}=\dfrac{8z-6x}{4}=\dfrac{12y-8z}{16}\)
=\(\dfrac{6x-12y+8z-6x+12y-8z}{9+4+6}=\dfrac{0}{29}\)
Như vậy ta có thể suy ra
\(\Rightarrow\left\{{}\begin{matrix}2x=4y\Rightarrow\dfrac{x}{4}=\dfrac{y}{2}\\4z=3x\Rightarrow\dfrac{x}{4}=\dfrac{z}{3}\end{matrix}\right.\)
\(\Rightarrow\dfrac{x}{4}=\dfrac{y}{2}=\dfrac{z}{3}\)=\(\dfrac{2x-y+z}{8-2+3}=\dfrac{27}{9}=3\)
\(\dfrac{x}{4}=3\Rightarrow x=12\)
\(\dfrac{y}{2}=3\Rightarrow y=6\)
\(\dfrac{z}{3}=3\Rightarrow z=9\)
~~~~~~~~~~~~~~~~~~~~~~~~
b,
5x=8y=3z và x-2y+z= 34
Áp dụng tính chất của dãy tỉ số bằng nhau:
Ta có: 5x= 8y= 3z= \(\dfrac{5x}{120}=\dfrac{8y}{120}=\dfrac{3z}{120}=\dfrac{x}{24}=\dfrac{y}{15}=\dfrac{z}{40}\)
\(\Rightarrow\dfrac{x}{24}=\dfrac{y}{15}=\dfrac{z}{40}=\dfrac{x-2y+z}{24-30+40}=\dfrac{34}{34}=1\)
\(\dfrac{x}{24}=1\Rightarrow x=24\)
\(\dfrac{y}{15}=1\Rightarrow y=15\)
\(\dfrac{z}{40}=1\Rightarrow z=40\)
Còn 1 cách nữa nhưng thôi nha bạn
ko bt làm