cho em sao d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


- Tìm điểm A’ đối xứng với A qua d
- Nối A’B cắt d tại M . M chính là điểm cần tìm .
- Thật vậy : Vì A’ đối xứng với A qua d cho nên MA=MA’ (1). Do đó :
MA+MB=MA’+MB=A’B .
- Giả sử tồn tại M’ khác M thuộc d thì : M’A+M’B=M’A’+M’B
'A B≥
. Dấu bằng chỉ
xảy ra khi A’M’B thẳng hàng . Nghĩa là M trùng với M’

D = - (x2 - 2).(x2 - 16)
Để D \(\ge\) 0 thì - (x2 - 2).(x2 - 16) \(\ge\) 0 hay (x2 - 2).(x2 - 16) \(\le\) 0
=> (x2 - 2); (x2 - 16) trái dấu
Nhận xét: -2 > - 6 nên x2 - 2 > x2 - 16
=> x2 - 2 \(\ge\) 0 và x2 - 16 \(\le\) 0
+) x2 - 2 \(\ge\) 0 <=> (x - \(\sqrt{2}\)).(x + \(\sqrt{2}\) ) \(\ge\) 0
=> x - \(\sqrt{2}\) và x + \(\sqrt{2}\) cùng dấu . Mà x - \(\sqrt{2}\) < x + \(\sqrt{2}\) nên
Hoặc x - \(\sqrt{2}\) \(\ge\) 0 hoặc x + \(\sqrt{2}\) \(\le\) 0
<=> x \(\ge\) \(\sqrt{2}\) hoặcx \(\le\) - \(\sqrt{2}\) (*)
+) x2 - 16 \(\le\) 0 <=> (x - 4).(x + 4) \(\le\) 0
=> x- 4 và x + 4 trái dấu. Mà x + 4 > x - 4 nên x + 4 \(\ge\) 0 và x - 4 \(\le\) 0
=> -4 \(\le\) x \(\le\) 4 (**)
(*)(**) => \(\sqrt{2}\) \(\le\) x \(\le\) 4 hoặc -4 \(\le\) x \(\le\)- \(\sqrt{2}\) thỏa mãn
Ta có D >= 0
=> ( x^2 - 2)( 16 -x^2 ) > = 0 ( >= lớn hơn =)
(+) x^2 - 2 > = 0 và 16 - x^2 >=0
\=> x^2 >= 2 và - x^2 >= - 16
=> x^2 >= 2 và x^2 <= 16
Kết hợp hai đk trên => 2 <= x^2 <= 16 => căn 2 < = x < = 4
(+) x^2 - 2 <= 0 và 16 - x^2 <= 0
=> x^2 <=2 và x^2 >= 16
kết hợp hai đk 16 <= x^2 <= 2 ( loại )
Vậy căn 2 <= x <= 4 thì D>= 0

th1: \(x^2-2\ge0\Leftrightarrow\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)\ge0\Leftrightarrow x\ge\sqrt{2}hoặc..x<-\sqrt{2}\)và \(16-x^2\ge0\Leftrightarrow\left(4-x\right)\left(4+x\right)\ge0\Leftrightarrow-4\le x\le4\) => \(\sqrt{2}\le x\le4\)hoặc \(-4\le x\le-\sqrt{2}\)
th2: \(x^2-2\le0\Leftrightarrow\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)\le0\Leftrightarrow-\sqrt{2}\le x\le\sqrt{2}\)và \(16-x^2\le0\Leftrightarrow\left(4-x\right)\left(4+x\right)\le0\Leftrightarrow x\ge4\)hoặc x < -4 => \(-4\le x\le-\sqrt{2}\)
=> \(-4\le x\le-\sqrt{2}\)

a) Xét ΔABD và ΔACE có:
∠ADB = ∠AEC = 900 (gt)
BA = AC (gt)
∠BAC (chung)
⇒ ΔABD =ΔACE (cạnh huyền – góc nhọn)
b) Có ΔABD =ΔACE ⇒ ∠ABD = ∠ACE (hai góc tương ứng)
mặt khác: ∠ABC = ∠ACB (D ABC cân tại A )
⇒ ABC – ABD =ACB – ACE ⇒ HBC = HCB
⇒ ΔBHC là tam giác cân tại H
c) Có ΔHDC vuông tại D nên HD < HC
mà HB = HC (ΔBHC cân tại H)
⇒ HD < HB
d) Gọi I là giao điểm của BN và CM
* Xét ΔBNH và ΔCMH có:
BH = CH (ΔBHC cân tại H)
∠BHN = ∠CHM (đối đỉnh)
NH = HM (gt)
ΔBNH = ΔCMH (c.g.c) ⇒ ∠HBN = ∠HCM
* Lại có: ∠HBC = ∠HCB (Chứng minh câu b)
⇒ ∠HBC + ∠HBN = ∠HCB + ∠HCM ⇒ ∠IBC = ∠ICB
⇒ IBC cân tại I ⇒ IB = IC (1)
Mặt khác ta có: AB = AC (D ABC cân tại A) (2)
HB = HC (D HBC cân tại H) (3)
* Từ (1); (2) và (3)
Þ 3 điểm I; A; H cùng nằm trên đường trung trực của BC
⇒ I; A; H thẳng hàng
⇒ các đường thẳng BN; AH; CM đồng quy

D = - (x2 - 2).(x2 - 16) => D \(\ge\) 0
=> - (x2 - 2).(x2 - 16) \(\ge\) 0 <=> (x2 - 2).(x2 - 16) \(\le\) 0
=> (x2 - 2); (x2 - 16) trái dấu
Mà x2 - 2 > x2 - 16 nên x2 - 2 \(\ge\) 0 và x2 - 16 \(\le\) 0
=> x2 \(\ge\) 2 và x2 \(\le\) 16 hay 2 \(\le\) x2 \(\le\) 16
x nguyên nên x2 = 4; 9; 16
=> x = 2;-2;3; -3; 4; -4

a) E thuộc AB => AE CŨNG VUÔNG GÓC VỚI AC TẠI A => GÓC EAC=90
XÉT TAM GIÁC ABC VÀ TAM GIÁC ADE:
AB=AD
2 GÓC VUÔNG = NHAU
AC=AE
=> 2 TAM GIÁC = NHAU (C.G.C) => BC=DE
B) GỌI DE GIAO BC TẠI H. TAM GIÁC ABC=ADE => GÓC BCA= GÓC AED
TAM GIÁC AED: GÓC AED+ GÓC ADE=90
MÀ GÓC ADE= GÓC HDC ( ĐỐI ĐỈNH). GÓC BCA= GÓC AED
=> GÓC HDC+GÓC BCA=90 <=> TAM GIÁC DHC VUÔNG TẠI H. HAY DE VUÔNG GOC BC TẠI H
C) TAM GIÁC ABC VUÔNG TẠI A => GÓC B + GÓC C=90.
4B=5C => B=5/4 C. THAY B=5/4 C VÀO <=> 5/4 C+C=90 <=> C=40
MÀ GÓC AED= GÓC C (CMT) => GÓC AED=40

- Tìm điểm A’ đối xứng với A qua d
- Nối A’B cắt d tại M. M chính là điểm cần tìm.
- Thật vậy : Vì A’ đối xứng với A qua d cho nên MA=MA’. Do đó : MA+MB=MA’+MB=A’B .
- Giả sử tồn tại M’ khác M thuộc d thì : M’A+M’B=M’A’+M’B lớn hơn hoặc bằng A'B. Dấu bằng chỉ xảy ra khi A’M’B thẳng hàng. Nghĩa là M trùng với M’
ít bài quá
và dễ nữa